Timezone: »
Independent component analysis (ICA) is a fundamental statistical tool used to reveal hidden generative processes from observed data. However, traditional ICA approaches struggle with the rotational invariance inherent in Gaussian distributions, often necessitating the assumption of non-Gaussianity in the underlying sources. This may limit their applicability in broader contexts. To accommodate Gaussian sources, we develop an identifiability theory that relies on second-order statistics without imposing further preconditions on the distribution of sources, by introducing novel assumptions on the connective structure from sources to observed variables. Different from recent work that focuses on potentially restrictive connective structures, our proposed assumption of structural variability is both considerably less restrictive and provably necessary. Furthermore, we propose two estimation methods based on second-order statistics and sparsity constraint. Experimental results are provided to validate our identifiability theory and estimation methods.
Author Information
Ignavier Ng (Carnegie Mellon University)
Yujia Zheng (Carnegie Mellon University)
Xinshuai Dong (Carnegie Mellon University)
Kun Zhang (CMU & MBZUAI)
More from the Same Authors
-
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2023 : Procedural Fairness Through Decoupling Objectionable Data Generating Components »
Zeyu Tang · Jialu Wang · Yang Liu · Peter Spirtes · Kun Zhang -
2023 : Procedural Fairness Through Decoupling Objectionable Data Generating Components »
Zeyu Tang · Jialu Wang · Yang Liu · Peter Spirtes · Kun Zhang -
2023 Poster: Generalizing Nonlinear ICA Beyond Structural Sparsity »
Yujia Zheng · Kun Zhang -
2023 Poster: Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 Poster: Temporally Disentangled Representation Learning under Unknown Nonstationarity »
Xiangchen Song · Weiran Yao · Yewen Fan · Xinshuai Dong · Guangyi Chen · Juan Carlos Niebles · Eric Xing · Kun Zhang -
2023 Poster: Identification of Nonlinear Latent Hierarchical Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 Oral: Generalizing Nonlinear ICA Beyond Structural Sparsity »
Yujia Zheng · Kun Zhang -
2023 Poster: Subspace Identification for Multi-Source Domain Adaptation »
Zijian Li · Ruichu Cai · Guangyi Chen · Boyang Sun · Zhifeng Hao · Kun Zhang -
2023 Poster: Learning World Models with Identifiable Factorization »
Yuren Liu · Biwei Huang · Zhengmao Zhu · Honglong Tian · Mingming Gong · Yang Yu · Kun Zhang -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models »
Haoyue Dai · Peter Spirtes · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2022 Poster: Truncated Matrix Power Iteration for Differentiable DAG Learning »
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi -
2021 Poster: How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness? »
Xinshuai Dong · Anh Tuan Luu · Min Lin · Shuicheng Yan · Hanwang Zhang -
2021 Poster: Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions »
Ignavier Ng · Yujia Zheng · Jiji Zhang · Kun Zhang -
2020 : Oral: Ignavier Ng »
Ignavier Ng -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: On the Role of Sparsity and DAG Constraints for Learning Linear DAGs »
Ignavier Ng · AmirEmad Ghassami · Kun Zhang -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang