Timezone: »
In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.
Author Information
David Brandfonbrener (Harvard University)
Ofir Nachum (Google Brain)
Joan Bruna (NYU)
More from the Same Authors
-
2021 : An Extensible Benchmark Suite for Learning to Simulate Physical Systems »
Karl Otness · Arvi Gjoka · Joan Bruna · Daniele Panozzo · Benjamin Peherstorfer · Teseo Schneider · Denis Zorin -
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Offline Policy Selection under Uncertainty »
Sherry Yang · Bo Dai · Ofir Nachum · George Tucker · Dale Schuurmans -
2021 : TARGETED ENVIRONMENT DESIGN FROM OFFLINE DATA »
Izzeddin Gur · Ofir Nachum · Aleksandra Faust -
2021 : Policy Gradients Incorporating the Future »
David Venuto · Elaine Lau · Doina Precup · Ofir Nachum -
2021 : Improving Zero-shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions »
Bogdan Mazoure · Ilya Kostrikov · Ofir Nachum · Jonathan Tompson -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : TRAIL: Near-Optimal Imitation Learning with Suboptimal Data »
Sherry Yang · Sergey Levine · Ofir Nachum -
2021 : Why so pessimistic? Estimating uncertainties for offline rl through ensembles, and why their independence matters »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Ofir Nachum -
2022 : A Mixture-of-Expert Approach to RL-based Dialogue Management »
Yinlam Chow · Azamat Tulepbergenov · Ofir Nachum · Dhawal Gupta · Moonkyung Ryu · Mohammad Ghavamzadeh · Craig Boutilier -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Sherry Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jacob Varley -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jake Varley -
2022 : Contrastive Value Learning: Implicit Models for Simple Offline RL »
Bogdan Mazoure · Benjamin Eysenbach · Ofir Nachum · Jonathan Tompson -
2022 : Visual Backtracking Teleoperation: A Data Collection Protocol for Offline Image-Based RL »
David Brandfonbrener · Stephen Tu · Avi Singh · Stefan Welker · Chad Boodoo · Nikolai Matni · Jacob Varley -
2023 Workshop: Foundation Models for Decision Making »
Sherry Yang · Ofir Nachum · Yilun Du · Stephen McAleer · Igor Mordatch · Linxi Fan · Jeannette Bohg · Dale Schuurmans -
2023 Poster: A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks »
Vignesh Kothapalli · Tom Tirer · Joan Bruna -
2023 Poster: Learning Universal Policies via Text-Guided Video Generation »
Yilun Du · Sherry Yang · Bo Dai · Hanjun Dai · Ofir Nachum · Josh Tenenbaum · Dale Schuurmans · Pieter Abbeel -
2023 Poster: On Single-Index Models beyond Gaussian Data »
Aaron Zweig · Loucas PILLAUD-VIVIEN · Joan Bruna -
2023 Poster: Supervised Pretraining Can Learn In-Context Reinforcement Learning »
Jonathan Lee · Annie Xie · Aldo Pacchiano · Yash Chandak · Chelsea Finn · Ofir Nachum · Emma Brunskill -
2022 Workshop: Foundation Models for Decision Making »
Sherry Yang · Yilun Du · Jack Parker-Holder · Siddharth Karamcheti · Igor Mordatch · Shixiang (Shane) Gu · Ofir Nachum -
2022 Poster: Oracle Inequalities for Model Selection in Offline Reinforcement Learning »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai · Emma Brunskill -
2022 Poster: Chain of Thought Imitation with Procedure Cloning »
Sherry Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum -
2022 Poster: Exponential Separations in Symmetric Neural Networks »
Aaron Zweig · Joan Bruna -
2022 Poster: When does return-conditioned supervised learning work for offline reinforcement learning? »
David Brandfonbrener · Alberto Bietti · Jacob Buckman · Romain Laroche · Joan Bruna -
2022 Poster: Multi-Game Decision Transformers »
Kuang-Huei Lee · Ofir Nachum · Sherry Yang · Lisa Lee · Daniel Freeman · Sergio Guadarrama · Ian Fischer · Winnie Xu · Eric Jang · Henryk Michalewski · Igor Mordatch -
2022 Poster: On Non-Linear operators for Geometric Deep Learning »
Grégoire Sergeant-Perthuis · Jakob Maier · Joan Bruna · Edouard Oyallon -
2022 Poster: Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Ofir Nachum -
2022 Poster: Learning single-index models with shallow neural networks »
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song -
2022 Poster: Improving Zero-Shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions »
Bogdan Mazoure · Ilya Kostrikov · Ofir Nachum · Jonathan Tompson -
2021 Poster: Near Optimal Policy Optimization via REPS »
Aldo Pacchiano · Jonathan Lee · Peter Bartlett · Ofir Nachum -
2021 Poster: On the Sample Complexity of Learning under Geometric Stability »
Alberto Bietti · Luca Venturi · Joan Bruna -
2021 Poster: Provable Representation Learning for Imitation with Contrastive Fourier Features »
Ofir Nachum · Sherry Yang -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: A mean-field analysis of two-player zero-sum games »
Carles Domingo-Enrich · Samy Jelassi · Arthur Mensch · Grant Rotskoff · Joan Bruna -
2020 Poster: Can Graph Neural Networks Count Substructures? »
Zhengdao Chen · Lei Chen · Soledad Villar · Joan Bruna -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Poster: A Dynamical Central Limit Theorem for Shallow Neural Networks »
Zhengdao Chen · Grant Rotskoff · Joan Bruna · Eric Vanden-Eijnden -
2020 Poster: CoinDICE: Off-Policy Confidence Interval Estimation »
Bo Dai · Ofir Nachum · Yinlam Chow · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Off-Policy Evaluation via the Regularized Lagrangian »
Sherry Yang · Ofir Nachum · Bo Dai · Lihong Li · Dale Schuurmans -
2020 Spotlight: CoinDICE: Off-Policy Confidence Interval Estimation »
Bo Dai · Ofir Nachum · Yinlam Chow · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 : Contributed Talks »
Kevin Lu · Matthew Hausknecht · Ofir Nachum -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: Gradient Dynamics of Shallow Univariate ReLU Networks »
Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna -
2019 Poster: On the Expressive Power of Deep Polynomial Neural Networks »
Joe Kileel · Matthew Trager · Joan Bruna -
2019 Poster: Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias »
Stéphane d'Ascoli · Levent Sagun · Giulio Biroli · Joan Bruna -
2019 Poster: On the equivalence between graph isomorphism testing and function approximation with GNNs »
Zhengdao Chen · Soledad Villar · Lei Chen · Joan Bruna -
2019 Poster: DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections »
Ofir Nachum · Yinlam Chow · Bo Dai · Lihong Li -
2019 Spotlight: DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections »
Ofir Nachum · Yinlam Chow · Bo Dai · Lihong Li -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2018 : Invited Talk 3 »
Joan Bruna -
2018 : Joan Bruna »
Joan Bruna -
2018 Poster: A Lyapunov-based Approach to Safe Reinforcement Learning »
Yinlam Chow · Ofir Nachum · Edgar Duenez-Guzman · Mohammad Ghavamzadeh -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2017 Poster: Bridging the Gap Between Value and Policy Based Reinforcement Learning »
Ofir Nachum · Mohammad Norouzi · Kelvin Xu · Dale Schuurmans -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus