Timezone: »
Oral Poster
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Method
Constantine Caramanis · Dimitris Fotakis · Alkis Kalavasis · Vasilis Kontonis · Christos Tzamos
Deep Neural Networks and Reinforcement Learning methods have empirically shown great promise in tackling challenging combinatorial problems. In those methods a deep neural network is used as a solution generator which is then trained by gradient-based methods (e.g., policy gradient) to successively obtain better solution distributions.In this work we introduce a novel theoretical framework for analyzing the effectiveness of such methods. We ask whether there exist generative models that (i) are expressive enough to generate approximately optimal solutions; (ii) have a tractable, i.e, polynomial in the size of the input, number of parameters; (iii) their optimization landscape is benign in the sense that it does not contain sub-optimal stationary points. Our main contribution is a positive answer to this question. Our result holds for a broad class of combinatorial problems including Max- and Min-Cut, Max-$k$-CSP, Maximum-Weight-Bipartite-Matching, and the Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel regularization process over vanilla gradient descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
Author Information
Constantine Caramanis (UT Austin)
Dimitris Fotakis (National Technical University of Athens)
Alkis Kalavasis (Yale University)
Vasilis Kontonis (University of Texas at Austin)
Christos Tzamos (UW-Madison)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 Oral: Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Method »
Thu. Dec 14th 04:30 -- 04:45 PM Room
More from the Same Authors
-
2021 Spotlight: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 Spotlight: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2021 : Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2023 : On Mitigating Unconscious Bias through Bandits with Evolving Biased Feedback »
Matthew Faw · Constantine Caramanis · Sanjay Shakkottai · Jessica Hoffmann -
2023 : On Mitigating Unconscious Bias through Bandits with Evolving Biased Feedback »
Matthew Faw · Constantine Caramanis · Sanjay Shakkottai · Jessica Hoffmann -
2023 Poster: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2023 Oral: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2023 Poster: Efficient Testable Learning of Halfspaces with Adversarial Label Noise »
Ilias Diakonikolas · Daniel Kane · Vasilis Kontonis · Sihan Liu · Nikos Zarifis -
2023 Poster: Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models »
Litu Rout · Negin Raoof · Giannis Daras · Constantine Caramanis · Alex Dimakis · Sanjay Shakkottai -
2023 Poster: The Gain from Ordering in Online Learning »
Vasilis Kontonis · Mingchen Ma · Christos Tzamos -
2023 Poster: SLaM: Student-Label Mixing for Distillation with Unlabeled Examples »
Vasilis Kontonis · Fotis Iliopoulos · Khoa Trinh · Cenk Baykal · Gaurav Menghani · Erik Vee -
2023 Poster: Logarithmic Bayes Regret Bounds »
Alexia Atsidakou · Branislav Kveton · Sumeet Katariya · Constantine Caramanis · Sujay Sanghavi -
2023 Poster: First Order Stochastic Optimization with Oblivious Noise »
Ilias Diakonikolas · Sushrut Karmalkar · Jong Ho Park · Christos Tzamos -
2023 Poster: Fairness Aware Counterfactuals for Subgroups »
Loukas Kavouras · Konstantinos Tsopelas · Giorgos Giannopoulos · Dimitris Sacharidis · Eleni Psaroudaki · Nikolaos Theologitis · Dimitrios Rontogiannis · Dimitris Fotakis · Ioannis Emiris -
2023 Poster: Weitzman's Rule for Pandora's Box with Correlations »
Evangelia Gergatsouli · Christos Tzamos -
2022 Poster: Tractable Optimality in Episodic Latent MABs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Non-Stationary Bandits under Recharging Payoffs: Improved Planning with Sublinear Regret »
Orestis Papadigenopoulos · Constantine Caramanis · Sanjay Shakkottai -
2022 Poster: Linear Label Ranking with Bounded Noise »
Dimitris Fotakis · Alkis Kalavasis · Vasilis Kontonis · Christos Tzamos -
2022 Poster: Weighted Distillation with Unlabeled Examples »
Fotis Iliopoulos · Vasilis Kontonis · Cenk Baykal · Gaurav Menghani · Khoa Trinh · Erik Vee -
2022 Poster: Learning and Covering Sums of Independent Random Variables with Unbounded Support »
Alkis Kalavasis · Konstantinos Stavropoulos · Emmanouil Zampetakis -
2022 Poster: Perfect Sampling from Pairwise Comparisons »
Dimitris Fotakis · Alkis Kalavasis · Christos Tzamos -
2022 Poster: Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes »
Alkis Kalavasis · Grigoris Velegkas · Amin Karbasi -
2021 Poster: ReLU Regression with Massart Noise »
Ilias Diakonikolas · Jong Ho Park · Christos Tzamos -
2021 Poster: Identity testing for Mallows model »
Róbert Busa-Fekete · Dimitris Fotakis · Balazs Szorenyi · Emmanouil Zampetakis -
2021 Poster: Private and Non-private Uniformity Testing for Ranking Data »
Róbert Busa-Fekete · Dimitris Fotakis · Emmanouil Zampetakis -
2021 Poster: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 Poster: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2021 Poster: Recurrent Submodular Welfare and Matroid Blocking Semi-Bandits »
Orestis Papadigenopoulos · Constantine Caramanis -
2021 Poster: Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2020 Poster: Efficient Online Learning of Optimal Rankings: Dimensionality Reduction via Gradient Descent »
Dimitris Fotakis · Thanasis Lianeas · Georgios Piliouras · Stratis Skoulakis -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions »
Matthew Faw · Rajat Sen · Karthikeyan Shanmugam · Constantine Caramanis · Sanjay Shakkottai -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alex Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Non-Convex SGD Learns Halfspaces with Adversarial Label Noise »
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Nikos Zarifis -
2020 Poster: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2020 Spotlight: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2020 Poster: Robust compressed sensing using generative models »
Ajil Jalal · Liu Liu · Alex Dimakis · Constantine Caramanis -
2019 Poster: Primal-Dual Block Generalized Frank-Wolfe »
Qi Lei · JIACHENG ZHUO · Constantine Caramanis · Inderjit Dhillon · Alex Dimakis -
2016 Poster: Fast Algorithms for Robust PCA via Gradient Descent »
Xinyang Yi · Dohyung Park · Yudong Chen · Constantine Caramanis -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Regularized EM Algorithms: A Unified Framework and Statistical Guarantees »
Xinyang Yi · Constantine Caramanis -
2014 Poster: Greedy Subspace Clustering »
Dohyung Park · Constantine Caramanis · Sujay Sanghavi -
2013 Poster: Memory Limited, Streaming PCA »
Ioannis Mitliagkas · Constantine Caramanis · Prateek Jain