Timezone: »
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning. For example, a robot learns the policy in a simulator, but when it is deployed in the real world, the dynamics of the environment may be different. Given the source and target domain with dynamics mismatch, we consider the online dynamics adaptation problem, in which case the agent can access sufficient source domain data while online interactions with the target domain are limited. Existing research has attempted to solve the problem from the dynamics discrepancy perspective. In this work, we reveal the limitations of these methods and explore the problem from the value difference perspective via a novel insight on the value consistency across domains. Specifically, we present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets across the two domains. Empirical results on various environments with kinematic and morphology shifts demonstrate that our method achieves superior performance compared to prior approaches.
Author Information
Kang Xu (Fudan University)
Chenjia Bai (Shanghai AI Laboratory)
Xiaoteng Ma (Department of Automation, Tsinghua University)
Dong Wang (Shanghai AI Laboratory)
Bin Zhao (Northwestern Polytechnical University)
Zhen Wang (Northwestern Polytechnical University)
Xuelong Li (Northwestern Polytechnical University)
Wei Li (Fudan University)
More from the Same Authors
-
2021 : OVD-Explorer: A General Information-theoretic Exploration Approach for Reinforcement Learning »
Jinyi Liu · Zhi Wang · YAN ZHENG · Jianye Hao · Junjie Ye · Chenjia Bai · Pengyi Li -
2022 Poster: RORL: Robust Offline Reinforcement Learning via Conservative Smoothing »
Rui Yang · Chenjia Bai · Xiaoteng Ma · Zhaoran Wang · Chongjie Zhang · Lei Han -
2022 Poster: OPEN: Orthogonal Propagation with Ego-Network Modeling »
Liang Yang · Lina Kang · Qiuliang Zhang · Mengzhe Li · bingxin niu · Dongxiao He · Zhen Wang · Chuan Wang · Xiaochun Cao · Yuanfang Guo -
2023 Poster: Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet Energy »
Lei Xu · Lei Chen · Rong Wang · Feiping Nie · Xuelong Li -
2023 Poster: Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Reinforcement Learning »
Haoran He · Chenjia Bai · Kang Xu · Zhuoran Yang · Weinan Zhang · Dong Wang · Bin Zhao · Xuelong Li -
2023 Poster: Self-supervised Graph Neural Networks via Low-Rank Decomposition »
Liang Yang · Runjie Shi · Qiuliang Zhang · bingxin niu · Zhen Wang · Xiaochun Cao · Chuan Wang -
2022 Spotlight: RORL: Robust Offline Reinforcement Learning via Conservative Smoothing »
Rui Yang · Chenjia Bai · Xiaoteng Ma · Zhaoran Wang · Chongjie Zhang · Lei Han -
2022 Spotlight: Lightning Talks 5A-1 »
Yao Mu · Jin Zhang · Haoyi Niu · Rui Yang · Mingdong Wu · Ze Gong · Shubham Sharma · Chenjia Bai · Yu ("Tony") Zhang · Siyuan Li · Yuzheng Zhuang · Fangwei Zhong · Yiwen Qiu · Xiaoteng Ma · Fei Ni · Yulong Xia · Chongjie Zhang · Hao Dong · Ming Li · Zhaoran Wang · Bin Wang · Chongjie Zhang · Jianyu Chen · Guyue Zhou · Lei Han · Jianming HU · Jianye Hao · Xianyuan Zhan · Ping Luo -
2022 Poster: Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training »
Renrui Zhang · Ziyu Guo · Peng Gao · Rongyao Fang · Bin Zhao · Dong Wang · Yu Qiao · Hongsheng Li -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang