Timezone: »
Poster
Private Federated Frequency Estimation: Adapting to the Hardness of the Instance
Jingfeng Wu · Wennan Zhu · Peter Kairouz · Vladimir Braverman
In federated frequency estimation (FFE), multiple clients work together to estimate the frequency of their local data by communicating with a server, while maintaining the security constraint of $\mathtt{secsum}$ where the server can only access the sum of client-held vectors. For FFE with a single communication round, it is known that count sketch is nearly information-theoretically optimal [Chen et al., 2022]. However, when multiple communication rounds are allowed, we propose a new sketch algorithm that is provably more accurate than a naive adaptation of count sketch. Furthermore, we show that both our sketch algorithm and count sketch can achieve better accuracy when the problem instance is simpler. Therefore, we propose a two-phase approach to enable the use of a smaller sketch size for simpler problems. Finally, we provide mechanisms to make our proposed algorithm differentially private. We verify the performance of our methods through experiments conducted on real datasets.
Author Information
Jingfeng Wu (UC Berkeley)
Wennan Zhu (Google)
Peter Kairouz (Google)
Vladimir Braverman (Rice University)
More from the Same Authors
-
2021 Spotlight: Coresets for Clustering with Missing Values »
Vladimir Braverman · Shaofeng Jiang · Robert Krauthgamer · Xuan Wu -
2021 : Communication Efficient Federated Learning with Secure Aggregation and Differential Privacy »
Wei-Ning Chen · Christopher A. Choquette-Choo · Peter Kairouz -
2022 : Bidirectional Adaptive Communication for Heterogeneous Distributed Learning »
Dmitrii Avdiukhin · Vladimir Braverman · Nikita Ivkin · Sebastian Stich -
2022 : From Local to Global: Spectral-Inspired Graph Neural Networks »
Ningyuan Huang · Soledad Villar · Carey E Priebe · Da Zheng · Chengyue Huang · Lin Yang · Vladimir Braverman -
2023 : Risk Bounds of Accelerated SGD for Overparameterized Linear Regression »
Xuheng Li · Yihe Deng · Jingfeng Wu · Dongruo Zhou · Quanquan Gu -
2023 : User Inference Attacks on LLMs »
Nikhil Kandpal · Krishna Pillutla · Alina Oprea · Peter Kairouz · Christopher A. Choquette-Choo · Zheng Xu -
2023 : One-shot Empirical Privacy Estimation for Federated Learning »
Galen Andrew · Peter Kairouz · Sewoong Oh · Alina Oprea · H. Brendan McMahan · Vinith Suriyakumar -
2023 : User Inference Attacks on Large Language Models »
Nikhil Kandpal · Krishna Pillutla · Alina Oprea · Peter Kairouz · Christopher A. Choquette-Choo · Zheng Xu -
2023 Competition: NeurIPS 2023 Machine Unlearning Competition »
Eleni Triantafillou · Fabian Pedregosa · Meghdad Kurmanji · Kairan ZHAO · Gintare Karolina Dziugaite · Peter Triantafillou · Ioannis Mitliagkas · Vincent Dumoulin · Lisheng Sun · Peter Kairouz · Julio C Jacques Junior · Jun Wan · Sergio Escalera · Isabelle Guyon -
2023 Poster: Unleashing the Power of Randomization in Auditing Differentially Private ML »
Krishna Pillutla · Galen Andrew · Peter Kairouz · H. Brendan McMahan · Alina Oprea · Sewoong Oh -
2023 Poster: Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 Poster: Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability »
Jingfeng Wu · Vladimir Braverman · Jason Lee -
2022 Spotlight: Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 : Invited Talk: Peter Kairouz - The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Peter Kairouz -
2022 Poster: The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2021 Poster: Coresets for Clustering with Missing Values »
Vladimir Braverman · Shaofeng Jiang · Robert Krauthgamer · Xuan Wu -
2021 Poster: The Benefits of Implicit Regularization from SGD in Least Squares Problems »
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Dean Foster · Sham Kakade -
2021 Poster: Pointwise Bounds for Distribution Estimation under Communication Constraints »
Wei-Ning Chen · Peter Kairouz · Ayfer Ozgur -
2021 Poster: The Skellam Mechanism for Differentially Private Federated Learning »
Naman Agarwal · Peter Kairouz · Ken Liu -
2021 Poster: Accommodating Picky Customers: Regret Bound and Exploration Complexity for Multi-Objective Reinforcement Learning »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2021 Poster: Adversarial Robustness of Streaming Algorithms through Importance Sampling »
Vladimir Braverman · Avinatan Hassidim · Yossi Matias · Mariano Schain · Sandeep Silwal · Samson Zhou -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 Tutorial: (Track1) Federated Learning and Analytics: Industry Meets Academia Q&A »
Peter Kairouz · Brendan McMahan · Virginia Smith -
2019 Poster: Communication-efficient Distributed SGD with Sketching »
Nikita Ivkin · Daniel Rothchild · Enayat Ullah · Vladimir Braverman · Ion Stoica · Raman Arora -
2018 Poster: The Physical Systems Behind Optimization Algorithms »
Lin Yang · Raman Arora · Vladimir Braverman · Tuo Zhao -
2018 Poster: Differentially Private Robust Low-Rank Approximation »
Raman Arora · Vladimir Braverman · Jalaj Upadhyay -
2017 : Poster Session »
Tim Tsz-Kit Lau · Johannes Maly · Nicolas Loizou · Christian Kroer · Yuan Yao · Youngsuk Park · Reka Agnes Kovacs · Dong Yin · Vlad Zhukov · Woosang Lim · David Barmherzig · Dimitris Metaxas · Bin Shi · Rajan Udwani · William Brendel · Yi Zhou · Vladimir Braverman · Sijia Liu · Eugene Golikov