Timezone: »
In this paper, we propose a novel data-pruning approach called moving-one-sample-out (MoSo), which aims to identify and remove the least informative samples from the training set. The core insight behind MoSo is to determine the importance of each sample by assessing its impact on the optimal empirical risk. This is achieved by measuring the extent to which the empirical risk changes when a particular sample is excluded from the training set. Instead of using the computationally expensive leaving-one-out-retraining procedure, we propose an efficient first-order approximator that only requires gradient information from different training stages. The key idea behind our approximation is that samples with gradients that are consistently aligned with the average gradient of the training set are more informative and should receive higher scores, which could be intuitively understood as follows: if the gradient from a specific sample is consistent with the average gradient vector, it implies that optimizing the network using the sample will yield a similar effect on all remaining samples. Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios and achieves satisfactory performance across various settings. Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios and outperforms state-of-the-art methods by a large margin across various settings.
Author Information
Haoru Tan (HKU)
Sitong Wu (ucas)
Fei Du (Alibaba Group)
Yukang Chen (The Chinese University of Hong Kong)
Zhibin Wang (Alibaba Group)
Fan Wang (Alibaba Group)
Xiaojuan Qi (The University of Hong Kong)
More from the Same Authors
-
2022 Poster: Unifying Voxel-based Representation with Transformer for 3D Object Detection »
Yanwei Li · Yilun Chen · Xiaojuan Qi · Zeming Li · Jian Sun · Jiaya Jia -
2022 Poster: VTC-LFC: Vision Transformer Compression with Low-Frequency Components »
Zhenyu Wang · Hao Luo · Pichao WANG · Feng Ding · Fan Wang · Hao Li -
2022 Poster: Towards Efficient 3D Object Detection with Knowledge Distillation »
Jihan Yang · Shaoshuai Shi · Runyu Ding · Zhe Wang · Xiaojuan Qi -
2023 Poster: CL-NeRF: Continual Learning of Neural Radiance Fields for Evolving Scene Representation »
Xiuzhe Wu · Peng Dai · Weipeng DENG · Handi Chen · Yang Wu · Yan-Pei Cao · Ying Shan · Xiaojuan Qi -
2023 Poster: CoDet: Co-occurrence Guided Region-Word Alignment for Open-Vocabulary Object Detection »
Chuofan Ma · Yi Jiang · Xin Wen · Zehuan Yuan · Xiaojuan Qi -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: VTC-LFC: Vision Transformer Compression with Low-Frequency Components »
Zhenyu Wang · Hao Luo · Pichao WANG · Feng Ding · Fan Wang · Hao Li -
2022 Poster: Spatial Pruned Sparse Convolution for Efficient 3D Object Detection »
Jianhui Liu · Yukang Chen · Xiaoqing Ye · Zhuotao Tian · Xiao Tan · Xiaojuan Qi -
2022 Poster: Prototypical VoteNet for Few-Shot 3D Point Cloud Object Detection »
Shizhen Zhao · Xiaojuan Qi -
2022 Poster: Self-Supervised Visual Representation Learning with Semantic Grouping »
Xin Wen · Bingchen Zhao · Anlin Zheng · Xiangyu Zhang · Xiaojuan Qi -
2022 Poster: Rethinking Resolution in the Context of Efficient Video Recognition »
Chuofan Ma · Qiushan Guo · Yi Jiang · Ping Luo · Zehuan Yuan · Xiaojuan Qi -
2022 Poster: Semantic Diffusion Network for Semantic Segmentation »
Haoru Tan · Sitong Wu · Jimin Pi -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz