Timezone: »
Intelligent intersection managers can improve safety by detecting dangerous drivers or failure modes in autonomous vehicles, warning oncoming vehicles as they approach an intersection. In this work, we present FailureNet, a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city. FailureNet observes the poses of vehicles as they approach an intersection and detects whether a failure is present in the autonomy stack, warning cross-traffic of potentially dangerous drivers. FailureNet can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving. The network is trained and deployed with autonomous vehicles in a scaled miniature city. Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
Author Information
Noam Buckman (MIT CSAIL)
Noam Buckman is a PhD Candidate in the Distributed Robotics Lab at the Massachusetts Institute of Technology. His research interests include socially-aware planning, game theory, multi-robot coordination, and robot platforms. Noam received his B.S. in Mechanical Engineering and Mathematics and M.S. in Mechanical Engineering from MIT.
Shiva Sreeram (Caltech)
Mathias Lechner (MIT)
Yutong Ban (MIT)
Ramin Hasani (MIT | Vanguard)
Sertac Karaman (MIT)
Daniela Rus (Massachusetts Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Infrastructure-based End-to-End Learning and Prevention of Driver Failure »
Dates n/a. Room
More from the Same Authors
-
2021 : Neighborhood Mixup Experience Replay: Local Convex Interpolation for Improved Sample Efficiency in Continuous Control Tasks »
Ryan Sander · Wilko Schwarting · Tim Seyde · Igor Gilitschenski · Sertac Karaman · Daniela Rus -
2021 : Strength Through Diversity: Robust Behavior Learning via Mixture Policies »
Tim Seyde · Wilko Schwarting · Igor Gilitschenski · Markus Wulfmeier · Daniela Rus -
2022 : PyHopper - A Plug-and-Play Hyperparameter Optimization Engine »
Mathias Lechner · Ramin Hasani · Sophie Neubauer · Philipp Neubauer · Daniela Rus -
2022 : Mixed-Memory RNNs for Learning Long-term Dependencies in Irregularly-sampled Time Series »
Mathias Lechner · Ramin Hasani -
2022 : Are All Vision Models Created Equal? A Study of the Open-Loop to Closed-Loop Causality Gap »
Mathias Lechner · Ramin Hasani · Alexander Amini · Tsun-Hsuan Johnson Wang · Thomas Henzinger · Daniela Rus -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 Poster: Efficient Dataset Distillation using Random Feature Approximation »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: Evolution of Neural Tangent Kernels under Benign and Adversarial Training »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: ActionSense: A Multimodal Dataset and Recording Framework for Human Activities Using Wearable Sensors in a Kitchen Environment »
Joseph DelPreto · Chao Liu · Yiyue Luo · Michael Foshey · Yunzhu Li · Antonio Torralba · Wojciech Matusik · Daniela Rus -
2021 Poster: Sparse Flows: Pruning Continuous-depth Models »
Lucas Liebenwein · Ramin Hasani · Alexander Amini · Daniela Rus -
2021 Poster: Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition »
Lucas Liebenwein · Alaa Maalouf · Dan Feldman · Daniela Rus -
2021 Poster: Causal Navigation by Continuous-time Neural Networks »
Charles Vorbach · Ramin Hasani · Alexander Amini · Mathias Lechner · Daniela Rus -
2021 Poster: Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2020 Poster: Deep Evidential Regression »
Alexander Amini · Wilko Schwarting · Ava P Soleimany · Daniela Rus -
2019 Poster: Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations »
Andrew Spielberg · Allan Zhao · Yuanming Hu · Tao Du · Wojciech Matusik · Daniela Rus -
2018 Poster: Invertibility of Convolutional Generative Networks from Partial Measurements »
Fangchang Ma · Ulas Ayaz · Sertac Karaman -
2017 : Panel Discussion »
Gregory Kahn · Ramesh Sarukkai · Adrien Gaidon · Sertac Karaman -
2017 : On Autonomous Driving: Challenges and Opportunities, Sertac Karaman, MIT »
Sertac Karaman -
2017 : Openning Remarks »
Ramin Hasani -
2017 Workshop: Workshop on Worm's Neural Information Processing (WNIP) »
Ramin Hasani · Manuel Zimmer · Stephen Larson · Tomas Kazmar · Radu Grosu -
2016 Poster: Dimensionality Reduction of Massive Sparse Datasets Using Coresets »
Dan Feldman · Mikhail Volkov · Daniela Rus -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus