Timezone: »
Traditional emergent communication (EC) methods often fail to generalize to novel settings or align with representations of natural language. Here, we show how controlling the Information Bottleneck (IB) tradeoff between complexity and informativeness (a principle thought to guide human languages) helps to address both of these problems in EC. Using VQ-VIB, a recent method for training EC agents while controlling the IB tradeoff, we find that: (1) increasing pressure for informativeness, which encourages agents to develop a shared understanding beyond task-specific needs, leads to better generalization to more challenging tasks and novel inputs; (2) VQ-VIB agents develop an EC space that encodes some semantic similarities and facilitates open-domain communication, similar to word embeddings in natural language; and (3) when translating between English and EC, greater complexity leads to improved performance of teams of simulated English speakers and trained VQ-VIB listeners, but only up to a threshold corresponding to the English complexity. These results indicate the importance of informational constraints for improving self-play performance and human-agent interaction.
Author Information
Mycal Tucker (Massachusetts Institute of Technology)
Roger Levy (Massachusetts Institute of Technology)
Julie A Shah (MIT)
Noga Zaslavsky (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Sat. Dec 3rd 05:40 -- 05:43 PM Room
More from the Same Authors
-
2021 : Self-supervised pragmatic reasoning »
Jennifer Hu · Roger Levy · Noga Zaslavsky -
2022 : Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Julie A Shah · Roger Levy · Noga Zaslavsky -
2022 : Towards True Lossless Sparse Communication in Multi-Agent Systems »
Seth Karten · Mycal Tucker · Siva Kailas · Katia Sycara -
2022 : Fast Adaptation via Human Diagnosis of Task Distribution Shift »
Andi Peng · Mark Ho · Aviv Netanyahu · Julie A Shah · Pulkit Agrawal -
2022 : Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations »
Felix Yanwei Wang · Nadia Figueroa · Shen Li · Ankit Shah · Julie A Shah -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2023 Poster: Human-Guided Complexity-Controlled Abstractions »
Andi Peng · Mycal Tucker · Eoin Kenny · Noga Zaslavsky · Pulkit Agrawal · Julie A Shah -
2023 Workshop: Information-Theoretic Principles in Cognitive Systems (InfoCog) »
Noga Zaslavsky · Rava Azeredo da Silveira · Ronit Bustin · Ron M. Hecht -
2023 : Opening Remarks »
Noga Zaslavsky -
2022 Workshop: Information-Theoretic Principles in Cognitive Systems »
Noga Zaslavsky · Mycal Tucker · Sarah Marzen · Irina Higgins · Stephanie Palmer · Samuel J Gershman -
2022 : Opening Remarks »
Noga Zaslavsky -
2022 Poster: Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Roger Levy · Julie Shah · Noga Zaslavsky -
2021 : [O5] Do Feature Attribution Methods Correctly Attribute Features? »
Yilun Zhou · Serena Booth · Marco Tulio Ribeiro · Julie A Shah -
2021 Workshop: Meaning in Context: Pragmatic Communication in Humans and Machines »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 : Opening remarks »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 Poster: Grammar-Based Grounded Lexicon Learning »
Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum -
2021 Poster: Emergent Discrete Communication in Semantic Spaces »
Mycal Tucker · Huao Li · Siddharth Agrawal · Dana Hughes · Katia Sycara · Michael Lewis · Julie A Shah -
2019 : Panel Discussion »
Jacob Andreas · Edward Gibson · Stefan Lee · Noga Zaslavsky · Jason Eisner · Jürgen Schmidhuber -
2019 : Invited Talk - 2 »
Noga Zaslavsky -
2018 Poster: Bayesian Inference of Temporal Task Specifications from Demonstrations »
Ankit Shah · Pritish Kamath · Julie A Shah · Shen Li -
2017 : Efficient human-like semantic representations via the information bottleneck principle »
Noga Zaslavsky -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2014 Poster: Fairness in Multi-Agent Sequential Decision-Making »
Chongjie Zhang · Julie A Shah -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah