Timezone: »
- [ 65224 ] A Spectral Approach to Item Response Theory
- [ 65225 ] Stability Analysis and Generalization Bounds of Adversarial Training
- [ 65226 ] Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
- [ 65228 ] Adam Can Converge Without Any Modification On Update Rules
- [ 65229 ] Poisson Flow Generative Models
- [ 65231 ] Contextual Bandits with Knapsacks for a Conversion Model
- [ 65232 ] Robust Graph Structure Learning over Images via Multiple Statistical Tests
Q&A on RocketChat immediately following Lightning Talks
Author Information
Yushun Zhang (The Chinese University of Hong Kong, Shenzhen)
I am a Ph.D. student under the supervision of Prof. Tom Zhi-Quan Luo and Prof. Tong Zhang, I am interested in understanding deep learning.
Duc Nguyen (University of Pennsylvania)
Jiancong Xiao (The Chinese University of Hong Kong, Shenzhen)
Wei Jiang (Nanjing University)
Yaohua Wang (Alibaba Group)
Yilun Xu (Massachusetts Institute of Technology)
Zhen LI (BNP Paribas)
I am a data scientist with extensive experience and knowledge in Statistical Machine Learning, Convex Optimization and NLP. I am also very interested in Reinforcement Learning and Vision.
Anderson Ye Zhang (University of Pennsylvania)
Ziming Liu (MIT)
Fangyi Zhang (Queensland University of Technology)
Gilles Stoltz (Université Paris Saclay)
Congliang Chen (The Chinese University of Hong Kong(Shenzhen))
Gang Li (University of Iowa)
Yanbo Fan (NLPR, CASIA)
Ruoyu Sun (Chinese University of Hong Kong (Shenzhen))
Naichen Shi (University of Michigan)
Yibo Wang (Nanjing University)
Ming Lin (Alibaba Group)
Max Tegmark (MIT)
Max Tegmark is a professor doing physics and AI research at MIT, and advocates for positive use of technology as president of the Future of Life Institute. He is the author of over 250 publications as well as the New York Times bestsellers “Life 3.0: Being Human in the Age of Artificial Intelligence” and "Our Mathematical Universe: My Quest for the Ultimate Nature of Reality". His AI research focuses on intelligible intelligence. His work with the Sloan Digital Sky Survey on galaxy clustering shared the first prize in Science magazine’s “Breakthrough of the Year: 2003.”
Lijun Zhang (Nanjing University (NJU))
Jue Wang (Tencent AI Lab)
Ruoyu Sun (Chinese University of Hong Kong (Shenzhen))
Tommi Jaakkola (MIT)
Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.
Senzhang Wang (Central South University)
Zhi-Quan Luo (University of Minnesota, Twin Cites)
Xiuyu Sun (Alibaba Group)
Zhi-Quan Luo (University of Minnesota, Twin Cites)
Tianbao Yang (Texas A&M University)
Rong Jin (Alibaba)
More from the Same Authors
-
2021 Spotlight: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 : Practice-Consistent Analysis of Adam-Style Methods »
Zhishuai Guo · Yi Xu · Wotao Yin · Rong Jin · Tianbao Yang -
2021 : A Stochastic Momentum Method for Min-max Bilevel Optimization »
Quanqi Hu · Bokun Wang · Tianbao Yang -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 : A Unified DRO View of Multi-class Loss Functions with top-N Consistency »
Dixian Zhu · Tianbao Yang -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : Fragment-Based Sequential Translation for Molecular Optimization »
Benson Chen · Xiang Fu · Regina Barzilay · Tommi Jaakkola -
2021 : Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities »
Tianbao Yang -
2021 : Crystal Diffusion Variational Autoencoder for Periodic Material Generation »
Tian Xie · Xiang Fu · Octavian Ganea · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Online Frank-Wolfe with Arbitrary Delays »
Yuanyu Wan · Wei-Wei Tu · Lijun Zhang -
2022 Poster: Contextual Bandits with Knapsacks for a Conversion Model »
Zhen LI · Gilles Stoltz -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations »
Xiang Fu · Zhenghao Wu · Wujie Wang · Tian Xie · Sinan Keten · Rafael Gomez-Bombarelli · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem »
Jason Yim · Brian L Trippe · Doug Tischer · David Baker · Tamara Broderick · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Smoothed-SGDmax: A Stability-Inspired Algorithm to Improve Adversarial Generalization »
Jiancong Xiao · Jiawei Zhang · Zhiquan Luo · Asuman Ozdaglar -
2022 Spotlight: One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations »
Yiming Zhu · Hongyu Liu · Yibing Song · Ziyang Yuan · Xintong Han · Chun Yuan · Qifeng Chen · Jue Wang -
2022 Spotlight: A Spectral Approach to Item Response Theory »
Duc Nguyen · Anderson Ye Zhang -
2022 Spotlight: Stability Analysis and Generalization Bounds of Adversarial Training »
Jiancong Xiao · Yanbo Fan · Ruoyu Sun · Jue Wang · Zhi-Quan Luo -
2022 Spotlight: Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization »
Wei Jiang · Gang Li · Yibo Wang · Lijun Zhang · Tianbao Yang -
2022 Spotlight: Adam Can Converge Without Any Modification On Update Rules »
Yushun Zhang · Congliang Chen · Naichen Shi · Ruoyu Sun · Zhi-Quan Luo -
2022 Spotlight: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2022 Spotlight: Contextual Bandits with Knapsacks for a Conversion Model »
Zhen LI · Gilles Stoltz -
2022 Spotlight: Robust Graph Structure Learning over Images via Multiple Statistical Tests »
Yaohua Wang · Fangyi Zhang · Ming Lin · Senzhang Wang · Xiuyu Sun · Rong Jin -
2022 Spotlight: VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training »
Zhan Tong · Yibing Song · Jue Wang · Limin Wang -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Online Frank-Wolfe with Arbitrary Delays »
Yuanyu Wan · Wei-Wei Tu · Lijun Zhang -
2022 Spotlight: Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor »
Lijun Zhang · Wei Jiang · Jinfeng Yi · Tianbao Yang -
2022 Spotlight: Does Momentum Change the Implicit Regularization on Separable Data? »
Bohan Wang · Qi Meng · Huishuai Zhang · Ruoyu Sun · Wei Chen · Zhi-Ming Ma · Tie-Yan Liu -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Panel: Panel 1C-3: Towards Understanding Grokking:… & Approximation with CNNs… »
Ziming Liu · GUOHAO SHEN -
2022 Spotlight: Improved Fine-Tuning by Better Leveraging Pre-Training Data »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2022 Poster: Adam Can Converge Without Any Modification On Update Rules »
Yushun Zhang · Congliang Chen · Naichen Shi · Ruoyu Sun · Zhi-Quan Luo -
2022 Poster: Entropy-Driven Mixed-Precision Quantization for Deep Network Design »
Zhenhong Sun · Ce Ge · Junyan Wang · Ming Lin · Hesen Chen · Hao Li · Xiuyu Sun -
2022 Poster: Robust Graph Structure Learning via Multiple Statistical Tests »
Yaohua Wang · Fangyi Zhang · Ming Lin · Senzhang Wang · Xiuyu Sun · Rong Jin -
2022 Poster: Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation »
Zeyu Qin · Yanbo Fan · Yi Liu · Li Shen · Yong Zhang · Jue Wang · Baoyuan Wu -
2022 Poster: One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations »
Yiming Zhu · Hongyu Liu · Yibing Song · Ziyang Yuan · Xintong Han · Chun Yuan · Qifeng Chen · Jue Wang -
2022 Poster: Grow and Merge: A Unified Framework for Continuous Categories Discovery »
Xinwei Zhang · Jianwen Jiang · Yutong Feng · Zhi-Fan Wu · Xibin Zhao · Hai Wan · Mingqian Tang · Rong Jin · Yue Gao -
2022 Poster: Does Momentum Change the Implicit Regularization on Separable Data? »
Bohan Wang · Qi Meng · Huishuai Zhang · Ruoyu Sun · Wei Chen · Zhi-Ming Ma · Tie-Yan Liu -
2022 Poster: OST: Improving Generalization of DeepFake Detection via One-Shot Test-Time Training »
Liang Chen · Yong Zhang · Yibing Song · Jue Wang · Lingqiao Liu -
2022 Poster: Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization »
Quanqi Hu · YONGJIAN ZHONG · Tianbao Yang -
2022 Poster: Large-scale Optimization of Partial AUC in a Range of False Positive Rates »
Yao Yao · Qihang Lin · Tianbao Yang -
2022 Poster: Torsional Diffusion for Molecular Conformer Generation »
Bowen Jing · Gabriele Corso · Jeffrey Chang · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Stability Analysis and Generalization Bounds of Adversarial Training »
Jiancong Xiao · Yanbo Fan · Ruoyu Sun · Jue Wang · Zhi-Quan Luo -
2022 Poster: AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition »
Shoufa Chen · Chongjian GE · Zhan Tong · Jiangliu Wang · Yibing Song · Jue Wang · Ping Luo -
2022 Poster: DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data »
Tiantian Fang · Ruoyu Sun · Alex Schwing -
2022 Poster: Towards Understanding Grokking: An Effective Theory of Representation Learning »
Ziming Liu · Ouail Kitouni · Niklas S Nolte · Eric Michaud · Max Tegmark · Mike Williams -
2022 Poster: Efficient Methods for Non-stationary Online Learning »
Zhi-Hua Zhou · Yan-Feng Xie · Lijun Zhang · Zhi-Hua Zhou -
2022 Poster: Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor »
Lijun Zhang · Wei Jiang · Jinfeng Yi · Tianbao Yang -
2022 Poster: FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting »
Tian Zhou · Ziqing MA · xue wang · Qingsong Wen · Liang Sun · Tao Yao · Wotao Yin · Rong Jin -
2022 Poster: Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization »
Wei Jiang · Gang Li · Yibo Wang · Lijun Zhang · Tianbao Yang -
2022 Poster: A Spectral Approach to Item Response Theory »
Duc Nguyen · Anderson Ye Zhang -
2022 Poster: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2022 Poster: VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training »
Zhan Tong · Yibing Song · Jue Wang · Limin Wang -
2022 Poster: Improved Fine-Tuning by Better Leveraging Pre-Training Data »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Xiangyang Ji · Antoni Chan · Rong Jin -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Understanding Interlocking Dynamics of Cooperative Rationalization »
Mo Yu · Yang Zhang · Shiyu Chang · Tommi Jaakkola -
2021 Poster: Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning »
ZHENHUAN YANG · Yunwen Lei · Puyu Wang · Tianbao Yang · Yiming Ying -
2021 Poster: Revisiting Smoothed Online Learning »
Lijun Zhang · Wei Jiang · Shiyin Lu · Tianbao Yang -
2021 Poster: Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning »
Chongjian GE · Youwei Liang · YIBING SONG · Jianbo Jiao · Jue Wang · Ping Luo -
2021 Poster: Faster Directional Convergence of Linear Neural Networks under Spherically Symmetric Data »
Dachao Lin · Ruoyu Sun · Zhihua Zhang -
2021 Poster: Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions »
Lijun Zhang · Guanghui Wang · Wei-Wei Tu · Wei Jiang · Zhi-Hua Zhou -
2021 Poster: When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work »
Jiawei Zhang · Yushun Zhang · Mingyi Hong · Ruoyu Sun · Zhi-Quan Luo -
2021 Poster: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 Poster: Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence »
Qi Qi · Youzhi Luo · Zhao Xu · Shuiwang Ji · Tianbao Yang -
2021 Poster: Random Noise Defense Against Query-Based Black-Box Attacks »
Zeyu Qin · Yanbo Fan · Hongyuan Zha · Baoyuan Wu -
2021 Poster: Online Convex Optimization with Continuous Switching Constraint »
Guanghui Wang · Yuanyu Wan · Tianbao Yang · Lijun Zhang -
2021 Poster: An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives »
Qi Qi · Zhishuai Guo · Yi Xu · Rong Jin · Tianbao Yang -
2020 Poster: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alex Schwing -
2020 Oral: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alex Schwing -
2020 Poster: Dynamic Regret of Convex and Smooth Functions »
Zhi-Hua Zhou · Yu-Jie Zhang · Lijun Zhang · Zhi-Hua Zhou -
2020 Poster: Improved Schemes for Episodic Memory-based Lifelong Learning »
Yunhui Guo · Mingrui Liu · Tianbao Yang · Tajana S Rosing -
2020 Poster: A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems »
Jiawei Zhang · Peijun Xiao · Ruoyu Sun · Zhiquan Luo -
2020 Poster: AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity »
Silviu-Marian Udrescu · Andrew Tan · Jiahai Feng · Orisvaldo Neto · Tailin Wu · Max Tegmark -
2020 Spotlight: Improved Schemes for Episodic Memory-based Lifelong Learning »
Yunhui Guo · Mingrui Liu · Tianbao Yang · Tajana S Rosing -
2020 Oral: AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity »
Silviu-Marian Udrescu · Andrew Tan · Jiahai Feng · Orisvaldo Neto · Tailin Wu · Max Tegmark -
2020 Poster: A Decentralized Parallel Algorithm for Training Generative Adversarial Nets »
Mingrui Liu · Wei Zhang · Youssef Mroueh · Xiaodong Cui · Jarret Ross · Tianbao Yang · Payel Das -
2020 Poster: Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization »
Yan Yan · Yi Xu · Qihang Lin · Wei Liu · Tianbao Yang -
2019 Poster: Solving graph compression via optimal transport »
Vikas Garg · Tommi Jaakkola -
2019 Poster: Generative Models for Graph-Based Protein Design »
John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola -
2019 Poster: L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise »
Yilun Xu · Peng Cao · Yuqing Kong · Yizhou Wang -
2019 Poster: XNAS: Neural Architecture Search with Expert Advice »
Niv Nayman · Asaf Noy · Tal Ridnik · Itamar Friedman · Rong Jin · Lihi Zelnik -
2019 Poster: Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems »
Yi Xu · Rong Jin · Tianbao Yang -
2019 Poster: Direct Optimization through $\arg \max$ for Discrete Variational Auto-Encoder »
Guy Lorberbom · Andreea Gane · Tommi Jaakkola · Tamir Hazan -
2019 Poster: Stagewise Training Accelerates Convergence of Testing Error Over SGD »
Zhuoning Yuan · Yan Yan · Rong Jin · Tianbao Yang -
2019 Poster: Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers »
Guang-He Lee · Yang Yuan · Shiyu Chang · Tommi Jaakkola -
2019 Poster: A Game Theoretic Approach to Class-wise Selective Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2018 : Invited Talk Session 3 »
Alexandre Tkatchenko · Tommi Jaakkola · Jennifer Wei -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Adaptive Online Learning in Dynamic Environments »
Lijun Zhang · Shiyin Lu · Zhi-Hua Zhou -
2018 Poster: First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time »
Yi Xu · Rong Jin · Tianbao Yang -
2018 Poster: Adaptive Negative Curvature Descent with Applications in Non-convex Optimization »
Mingrui Liu · Zhe Li · Xiaoyu Wang · Jinfeng Yi · Tianbao Yang -
2018 Poster: Faster Online Learning of Optimal Threshold for Consistent F-measure Optimization »
Xiaoxuan Zhang · Mingrui Liu · Xun Zhou · Tianbao Yang -
2018 Poster: $\ell_1$-regression with Heavy-tailed Distributions »
Lijun Zhang · Zhi-Hua Zhou -
2018 Poster: Adding One Neuron Can Eliminate All Bad Local Minima »
SHIYU LIANG · Ruoyu Sun · Jason Lee · R. Srikant -
2018 Poster: Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions »
Mingrui Liu · Xiaoxuan Zhang · Lijun Zhang · Rong Jin · Tianbao Yang -
2018 Poster: Towards Robust Interpretability with Self-Explaining Neural Networks »
David Alvarez-Melis · Tommi Jaakkola -
2017 Poster: ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization »
Yi Xu · Mingrui Liu · Qihang Lin · Tianbao Yang -
2017 Poster: Scalable Demand-Aware Recommendation »
Jinfeng Yi · Cho-Jui Hsieh · Kush Varshney · Lijun Zhang · Yao Li -
2017 Poster: Local Aggregative Games »
Vikas Garg · Tommi Jaakkola -
2017 Poster: Style Transfer from Non-Parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Spotlight: Style Transfer from Non-parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Learning with Average Top-k Loss »
Yanbo Fan · Siwei Lyu · Yiming Ying · Baogang Hu -
2017 Poster: Improved Dynamic Regret for Non-degenerate Functions »
Lijun Zhang · Tianbao Yang · Jinfeng Yi · Rong Jin · Zhi-Hua Zhou -
2017 Poster: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network »
Wengong Jin · Connor Coley · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Adaptive Accelerated Gradient Converging Method under H\"{o}lderian Error Bound Condition »
Mingrui Liu · Tianbao Yang -
2017 Poster: Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter »
Yi Xu · Qihang Lin · Tianbao Yang -
2017 Poster: Learning with Feature Evolvable Streams »
Bo-Jian Hou · Lijun Zhang · Zhi-Hua Zhou -
2016 Poster: Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than $O(1/\epsilon)$ »
Yi Xu · Yan Yan · Qihang Lin · Tianbao Yang -
2016 Poster: Learning Tree Structured Potential Games »
Vikas Garg · Tommi Jaakkola -
2016 Poster: Improved Dropout for Shallow and Deep Learning »
Zhe Li · Boqing Gong · Tianbao Yang -
2015 Poster: From random walks to distances on unweighted graphs »
Tatsunori Hashimoto · Yi Sun · Tommi Jaakkola -
2015 Poster: Principal Differences Analysis: Interpretable Characterization of Differences between Distributions »
Jonas Mueller · Tommi Jaakkola -
2014 Poster: Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization »
Meisam Razaviyayn · Mingyi Hong · Zhi-Quan Luo · Jong-Shi Pang -
2014 Poster: Controlling privacy in recommender systems »
Yu Xin · Tommi Jaakkola -
2014 Poster: Parallel Direction Method of Multipliers »
Huahua Wang · Arindam Banerjee · Zhi-Quan Luo -
2013 Poster: Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions »
Tamir Hazan · Subhransu Maji · Joseph Keshet · Tommi Jaakkola -
2013 Poster: Mixed Optimization for Smooth Functions »
Mehrdad Mahdavi · Lijun Zhang · Rong Jin -
2013 Poster: On the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization »
Ke Hou · Zirui Zhou · Anthony Man-Cho So · Zhi-Quan Luo -
2013 Poster: Linear Convergence with Condition Number Independent Access of Full Gradients »
Lijun Zhang · Mehrdad Mahdavi · Rong Jin -
2013 Poster: On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations »
Tamir Hazan · Subhransu Maji · Tommi Jaakkola -
2012 Workshop: Machine Learning Approaches to Mobile Context Awareness »
Katherine Ellis · Gert Lanckriet · Tommi Jaakkola · Lenny Grokop -
2012 Poster: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms »
Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2011 Tutorial: Linear Programming Relaxations for Graphical Models »
Amir Globerson · Tommi Jaakkola -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2007 Oral: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations »
Amir Globerson · Tommi Jaakkola -
2006 Talk: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Spotlight: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Poster: Parameter Expanded Variational Bayesian Methods »
Yuan (Alan) Qi · Tommi Jaakkola