Timezone: »
- [ 65147 ] The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models
- [ 65148 ] LiteTransformerSearch: Training-free Neural Architecture Search for Efficient Language Models
- [ 65149 ] Your Out-of-Distribution Detection Method is Not Robust!
- [ 65151 ] SAPA: Similarity-Aware Point Affiliation for Feature Upsampling
- [ 65152 ] Accelerating Certified Robustness Training via Knowledge Transfer
- [ 65155 ] Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising
Q&A on RocketChat immediately following Lightning Talks
Author Information
Conglong Li (Microsoft)
Mohammad Azizmalayeri (Sharif University of Technology)
Mojan Javaheripi (University of California San Diego)
I am a PhD student at UC San Diego working under supervision of Prof. Farinaz Koushanfar. My research lies at the intersection of machine learning algorithm and systems. I tackle challenges to enable hardware-aware and secure Deep Learning (DL). I have worked in the areas of efficient DL training and execution on constrained devices as well as adversarially robust DL models. I am the recipient of the 2019 Qualcomm Innovation Fellowship award. Prior to my PhD, I obtained my Bachelor's in Electrical Engineering majoring in digital system design. Skills: Deep Learning, AutoML, Computer Vision, Discrete and Continuous Optimization, Computer Architecture
Pratik Vaishnavi (Stony Brook University)
Jon Hasselgren (NVIDIA)
Hao Lu (Huazhong University of Science and Technology)
Kevin Eykholt (International Business Machines)
Arshia Soltani Moakhar (Sharif University of Technology)
Wenze Liu (Huazhong University of Science and Technology)
Gustavo de Rosa (Microsoft Research)
Nikolai Hofmann (NVIDIA)
Minjia Zhang (Microsoft)
Zixuan Ye (Huazhong University of Science and Technology)
Jacob Munkberg (NVIDIA)
Amir Rahmati (Stony Brook University)
Arman Zarei (Sharif University of Technology, Sharif University of Technology)
Subhabrata Mukherjee (Microsoft)
Yuxiong He (Microsoft)
Shital Shah (Microsoft)
Reihaneh Zohrabi (Sharif University of Technology)
Hongtao Fu
Tomasz Religa (University of Cambridge)
Yuliang Liu (Huazhong University of Science and Technology)
Mohammad Manzuri (Sharif University of Technology)
Mohammad Hossein Rohban (Sharif University of Technology)
Zhiguo Cao (Huazhong University of Science and Technology)
Caio Cesar Teodoro Mendes (Microsoft)
Sebastien Bubeck (Microsoft Research)
Farinaz Koushanfar (William Marsh Rice University)
Debadeepta Dey (Microsoft Research)
I am a researcher in the Adaptive Systems and Interaction (ASI) group led by Dr. Eric Horvitz at Microsoft Research, Redmond, USA. I finished my PhD at the Robotics Institute, Carnegie Mellon University, USA, where I was advised by Prof. J. Andrew (Drew) Bagnell. I do fundamental as well as applied research in machine learning, control and computer vision with applications to autonomous agents in general and robotics in particular. My interests include decison-making under uncertainty, reinforcement learning, artificial intelligence and machine learning. As of January 2019 I am also serving as Affiliate Assistant Professor at The School of Computer Science and Engineering, University of Washington, Seattle, USA. I regularly review for NeurIPS, ICLR, ICML, ICRA, IROS, IJRR, JFR. On occasion for CVPR, ECCV, ICCV and Autonomous Robots.
More from the Same Authors
-
2021 Spotlight: A single gradient step finds adversarial examples on random two-layers neural networks »
Sebastien Bubeck · Yeshwanth Cherapanamjeri · Gauthier Gidel · Remi Tachet des Combes -
2022 Poster: Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising »
Jon Hasselgren · Nikolai Hofmann · Jacob Munkberg -
2022 Poster: Your Out-of-Distribution Detection Method is Not Robust! »
Mohammad Azizmalayeri · Arshia Soltani Moakhar · Arman Zarei · Reihaneh Zohrabi · Mohammad Manzuri · Mohammad Hossein Rohban -
2022 Poster: SAPA: Similarity-Aware Point Affiliation for Feature Upsampling »
Hao Lu · Wenze Liu · Zixuan Ye · Hongtao Fu · Yuliang Liu · Zhiguo Cao -
2022 : Benchmarking the Effect of Poisoning Defenses on the Security and Bias of the Final Model »
Nathalie Baracaldo · Kevin Eykholt · Farhan Ahmed · Yi Zhou · Shriti Priya · Taesung Lee · Swanand Kadhe · Yusong Tan · Sridevi Polavaram · Sterling Suggs -
2022 : FL-Talk: Covert Communication in Federated Learning via Spectral Steganography »
Huili Chen · Farinaz Koushanfar -
2022 : zPROBE: Zero Peek Robustness Checks for Federated Learning »
Zahra Ghodsi · Mojan Javaheripi · Nojan Sheybani · Xinqiao Zhang · Ke Huang · Farinaz Koushanfar -
2022 : On the Feasibility of Compressing Certifiably Robust Neural Networks »
Pratik Vaishnavi · Veena Krish · Farhan Ahmed · Kevin Eykholt · Amir Rahmati -
2022 : Fake It Until You Make It : Towards Accurate Near-Distribution Novelty Detection »
Hossein Mirzaei · Mohammadreza Salehi · Sajjad Shahabi · Efstratios Gavves · Cees Snoek · Mohammad Sabokrou · Mohammad Hossein Rohban -
2022 : Contributed Talk: zPROBE: Zero Peek Robustness Checks for Federated Learning »
Zahra Ghodsi · Mojan Javaheripi · Nojan Sheybani · Xinqiao Zhang · Ke Huang · Farinaz Koushanfar -
2022 Spotlight: ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers »
Zhewei Yao · Reza Yazdani Aminabadi · Minjia Zhang · Xiaoxia Wu · Conglong Li · Yuxiong He -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jiaqi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: MSDS: A Large-Scale Chinese Signature and Token Digit String Dataset for Handwriting Verification »
Peirong Zhang · Jiajia Jiang · Yuliang Liu · Lianwen Jin -
2022 Spotlight: The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models »
Conglong Li · Minjia Zhang · Yuxiong He -
2022 Spotlight: LiteTransformerSearch: Training-free Neural Architecture Search for Efficient Language Models »
Mojan Javaheripi · Gustavo de Rosa · Subhabrata Mukherjee · Shital Shah · Tomasz Religa · Caio Cesar Teodoro Mendes · Sebastien Bubeck · Farinaz Koushanfar · Debadeepta Dey -
2022 Spotlight: Your Out-of-Distribution Detection Method is Not Robust! »
Mohammad Azizmalayeri · Arshia Soltani Moakhar · Arman Zarei · Reihaneh Zohrabi · Mohammad Manzuri · Mohammad Hossein Rohban -
2022 Spotlight: SAPA: Similarity-Aware Point Affiliation for Feature Upsampling »
Hao Lu · Wenze Liu · Zixuan Ye · Hongtao Fu · Yuliang Liu · Zhiguo Cao -
2022 Spotlight: Accelerating Certified Robustness Training via Knowledge Transfer »
Pratik Vaishnavi · Kevin Eykholt · Amir Rahmati -
2022 Spotlight: Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising »
Jon Hasselgren · Nikolai Hofmann · Jacob Munkberg -
2022 Panel: Panel 2B-4: Extreme Compression for… & Exploring Length Generalization… »
Cem Anil · Minjia Zhang -
2022 Poster: ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers »
Zhewei Yao · Reza Yazdani Aminabadi · Minjia Zhang · Xiaoxia Wu · Conglong Li · Yuxiong He -
2022 Poster: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models »
Dongkuan (DK) Xu · Subhabrata Mukherjee · Xiaodong Liu · Debadeepta Dey · Wenhui Wang · Xiang Zhang · Ahmed Awadallah · Jianfeng Gao -
2022 Poster: The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models »
Conglong Li · Minjia Zhang · Yuxiong He -
2022 Poster: MSDS: A Large-Scale Chinese Signature and Token Digit String Dataset for Handwriting Verification »
Peirong Zhang · Jiajia Jiang · Yuliang Liu · Lianwen Jin -
2022 Poster: Accelerating Certified Robustness Training via Knowledge Transfer »
Pratik Vaishnavi · Kevin Eykholt · Amir Rahmati -
2022 Poster: LiteTransformerSearch: Training-free Neural Architecture Search for Efficient Language Models »
Mojan Javaheripi · Gustavo de Rosa · Subhabrata Mukherjee · Shital Shah · Tomasz Religa · Caio Cesar Teodoro Mendes · Sebastien Bubeck · Farinaz Koushanfar · Debadeepta Dey -
2022 Poster: XTC: Extreme Compression for Pre-trained Transformers Made Simple and Efficient »
Xiaoxia Wu · Zhewei Yao · Minjia Zhang · Conglong Li · Yuxiong He -
2021 Poster: SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement »
Heyang Qin · Samyam Rajbhandari · Olatunji Ruwase · Feng Yan · Lei Yang · Yuxiong He -
2021 Poster: NxMTransformer: Semi-Structured Sparsification for Natural Language Understanding via ADMM »
Connor Holmes · Minjia Zhang · Yuxiong He · Bo Wu -
2021 Poster: Adversarial Examples in Multi-Layer Random ReLU Networks »
Peter Bartlett · Sebastien Bubeck · Yeshwanth Cherapanamjeri -
2021 Poster: A single gradient step finds adversarial examples on random two-layers neural networks »
Sebastien Bubeck · Yeshwanth Cherapanamjeri · Gauthier Gidel · Remi Tachet des Combes -
2021 Poster: A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2021 Oral: A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2020 Poster: HM-ANN: Efficient Billion-Point Nearest Neighbor Search on Heterogeneous Memory »
Jie Ren · Minjia Zhang · Dong Li -
2020 Poster: Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping »
Minjia Zhang · Yuxiong He -
2020 Poster: AdaTune: Adaptive Tensor Program Compilation Made Efficient »
Menghao Li · Minjia Zhang · Chi Wang · Mingqin Li -
2020 Poster: Network size and size of the weights in memorization with two-layers neural networks »
Sebastien Bubeck · Ronen Eldan · Yin Tat Lee · Dan Mikulincer -
2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2019 Poster: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Spotlight: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Poster: Complexity of Highly Parallel Non-Smooth Convex Optimization »
Sebastien Bubeck · Qijia Jiang · Yin-Tat Lee · Yuanzhi Li · Aaron Sidford -
2019 Spotlight: Complexity of Highly Parallel Non-Smooth Convex Optimization »
Sebastien Bubeck · Qijia Jiang · Yin-Tat Lee · Yuanzhi Li · Aaron Sidford -
2018 Poster: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Oral: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Poster: Is Q-Learning Provably Efficient? »
Chi Jin · Zeyuan Allen-Zhu · Sebastien Bubeck · Michael Jordan -
2018 Poster: Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models »
Minjia Zhang · Wenhan Wang · Xiaodong Liu · Jianfeng Gao · Yuxiong He