Timezone: »
- [ 65048 ] Autoinverse: Uncertainty Aware Inversion of Neural Networks
- [ 65049 ] Meta-Auto-Decoder for Solving Parametric Partial Differential Equations
- [ 65050 ] Bayesian Optimistic Optimization: Optimistic Exploration for Model-based Reinforcement Learning
- [ 65051 ] PhysGNN: A Physics--Driven Graph Neural Network Based Model for Predicting Soft Tissue Deformation in Image--Guided Neurosurgery
- [ 65052 ] Inverse Design for Fluid-Structure Interactions using Graph Network Simulators
- [ 65054 ] Learning Physical Dynamics with Subequivariant Graph Neural Networks
- [ 65055 ] PALBERT: Teaching ALBERT to Ponder
- [ 65056 ] Towards Practical Control of Singular Values of Convolutional Layers
- [ 65057 ] Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
- [ 65058 ] TA-GATES: An Encoding Scheme for Neural Network Architectures
Q&A on RocketChat immediately following Lightning Talks
Author Information
Alexandra Senderovich (Higher School of Economics)
Zhijie Deng (Shanghai Jiao Tong University)
Zhijie Deng joined Qing Yuan Research Institute of Shanghai Jiao Tong University as a tenure-track assistant professor in July 2022. He obtained the Ph.D. degree from Department of Computer Science and Technology, Tsinghua University in June 2022, under the supervision of Prof. Bo Zhang and Prof. Jun Zhu.
Navid Ansari (Max Planck Institute for Informatics)
Xuefei Ning (Tsinghua University)
Yasmin Salehi (McGill University)
I am a graduate machine learning researcher and a recent Electrical and Computer Engineering Master's graduate from McGill University. My scientific background lies in Electrical Engineering, Software Engineering, Biomedical Engineering, and Computer Science. Specifically, my Master’s degree involved advanced courses in Mathematics and Computer Science, with a focus on Machine Learning. My previous research work has been on the application of Graph Representation Learning in Natural Language Processing, Physics, and Medicine.
Xiang Huang (University of Science and Technology of China)
Chenyang Wu (Nanjing University)
Kelsey Allen (DeepMind)
Jiaqi Han (Tsinghua University)
Nikita Balagansky (Tinkoff)
Tatiana Lopez-Guevara (DeepMind)
Tianci Li (Nanjing University)
Zhanhong Ye (Peking University)
Zixuan Zhou (Tsinghua University, Tsinghua University)
Feng Zhou (Renmin University of China)
Ekaterina Bulatova (Higher School of Economics)
Daniil Gavrilov (Tinkoff)
Wenbing Huang (Tsinghua University)
Dennis Giannacopoulos (McGill University)
Hans-peter Seidel (Max-Planck Institute)
Anton Obukhov (ETH Zurich)
Kimberly Stachenfeld (DeepMind)
Hongsheng Liu (Huawei Technologies Ltd.)
Jun Zhu (Tsinghua University)
Junbo Zhao (Tsinghua University, Tsinghua University)
Hengbo Ma (University of California, Berkeley)
Nima Vahidi Ferdowsi (Saarland Informatics Campus, Max-Planck Institute)
Zongzhang Zhang (Nanjing University)

I am now an associate professor at the School of Artificial Intelligence, Nanjing University.
Vahid Babaei (Max Planck Institute for Informatics)
Jiachen Li (Stanford University)
Alvaro Sanchez Gonzalez (DeepMind)
Yang Yu (Nanjing University)
Shi Ji (University of Chinese Academy of Sciences)
Maxim Rakhuba (HSE University)
Tianchen Zhao (Beihang University)
Yiping Deng (Tsinghua University, Tsinghua University)
Peter Battaglia (DeepMind)
Josh Tenenbaum (MIT)
Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).
Zidong Wang (Zhejiang University)
Chuang Gan (UMass Amherst/ MIT-IBM Watson AI Lab)
Changcheng Tang (Beijing Novauto Co. Ltd)
Jessica Hamrick (DeepMind)
Kang Yang (Huazhong University of Science and Technology)
Tobias Pfaff (DeepMind)
Yang Li (University of Chinese Academy of Sciences)
Shuang Liang
Min Wang (Huawei Technologies Ltd.)
Huazhong Yang (Tsinghua University, Tsinghua University)
Haotian CHU (Huawei)
Yu Wang (Tsinghua University)
Yu Wang received his B.S. degree in 2002 and Ph.D. degree (with honor) in 2007 from Tsinghua University, Beijing. He is currently a Tenured Associate Professor with the Department of Electronic Engineering, Tsinghua University. His research interests include brain inspired computing, application specific hardware computing, parallel circuit analysis, and power/reliability aware system design methodology. Dr. Wang has authored and coauthored over 150 papers in refereed journals and conferences. He has received Best Paper Award in FPGA 2017, ISVLSI 2012, and Best Poster Award in HEART 2012 with 8 Best Paper Nominations. He is a recipient of IBM X10 Faculty Award in 2010. He served as TPC chair for ICFPT 2011 and Finance Chair of ISLPED 2012-2016, and served as program committee member for leading conferences in these areas, including top EDA conferences such as DAC, DATE, ICCAD, ASP-DAC, and top FPGA conferences such as FPGA and FPT. Currently he serves as Co-EIC for SIGDA E-Newsletter, Associate Editor for IEEE Transactions on CAD and Journal of Circuits, Systems, and Computers. He also serves as guest editor for Integration, the VLSI Journal and IEEE Transactions on Multi-Scale Computing Systems. He is a recipient of NSFC Excellent Young Scholar,and is now serving as ACM distinguished speaker. He is an IEEE/ACM senior member.
Fan Yu (University of Science and Technology of China)
Bei Hua (University of Science and Technology of China)
Lei Chen (Hong Kong University of Science and Technology)
Bin Dong (Peking University)
More from the Same Authors
-
2019 Poster: Gated CRF Loss for Weakly Supervised Semantic Image Segmentation »
Anton Obukhov · Stamatios Georgoulis · Dengxin Dai · Luc V Gool -
2020 : Learning Mesh-Based Simulation with Graph Networks »
Tobias Pfaff · Meire Fortunato · Alvaro Sanchez Gonzalez · Peter Battaglia -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan -
2021 Spotlight: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 Spotlight: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 : STAR: A Benchmark for Situated Reasoning in Real-World Videos »
Bo Wu · Shoubin Yu · Zhenfang Chen · Josh Tenenbaum · Chuang Gan -
2021 : AutumnSynth: Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Josh Tenenbaum · Armando Solar-Lezama -
2021 : Learning Efficient Multi-Agent Cooperative Visual Exploration »
Chao Yu · Jiaxuan Gao · Huazhong Yang · Yu Wang · Yi Wu -
2021 : Noether Networks: Meta-Learning Useful Conserved Quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 : Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Armando Solar-Lezama · Josh Tenenbaum -
2021 : Towards Incorporating Rich Social Interactions Into MDPs »
Ravi Tejwani · Yen-Ling Kuo · Tianmin Shu · Bennett Stankovits · Dan Gutfreund · Josh Tenenbaum · Boris Katz · Andrei Barbu -
2021 : Learning to solve complex tasks by growing knowledge culturally across generations »
Michael Tessler · Jason Madeano · Pedro Tsividis · Noah Goodman · Josh Tenenbaum -
2021 : Counter-Strike Deathmatch with Large-Scale Behavioural Cloning »
Tim Pearce · Jun Zhu -
2022 Poster: A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs »
Songming Liu · Hao Zhongkai · Chengyang Ying · Hang Su · Jun Zhu · Ze Cheng -
2022 Poster: Isometric 3D Adversarial Examples in the Physical World »
Yibo Miao · Yinpeng Dong · Jun Zhu · Xiao-Shan Gao -
2022 Poster: Efficient Multi-agent Communication via Self-supervised Information Aggregation »
Cong Guan · Feng Chen · Lei Yuan · Chenghe Wang · Hao Yin · Zongzhang Zhang · Yang Yu -
2022 Poster: Confidence-based Reliable Learning under Dual Noises »
Peng Cui · Yang Yue · Zhijie Deng · Jun Zhu -
2022 Poster: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations »
Min Zhao · Fan Bao · Chongxuan LI · Jun Zhu -
2022 Poster: ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial Viewpoints »
Yinpeng Dong · Shouwei Ruan · Hang Su · Caixin Kang · Xingxing Wei · Jun Zhu -
2022 Poster: PALBERT: Teaching ALBERT to Ponder »
Nikita Balagansky · Daniil Gavrilov -
2022 Poster: DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps »
Cheng Lu · Yuhao Zhou · Fan Bao · Jianfei Chen · Chongxuan LI · Jun Zhu -
2022 Poster: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 Poster: Accelerated Linearized Laplace Approximation for Bayesian Deep Learning »
Zhijie Deng · Feng Zhou · Jun Zhu -
2022 Poster: When to Update Your Model: Constrained Model-based Reinforcement Learning »
Tianying Ji · Yu Luo · Fuchun Sun · Mingxuan Jing · Fengxiang He · Wenbing Huang -
2022 Poster: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 Poster: Towards Practical Control of Singular Values of Convolutional Layers »
Alexandra Senderovich · Ekaterina Bulatova · Anton Obukhov · Maxim Rakhuba -
2022 Poster: SNAKE: Shape-aware Neural 3D Keypoint Field »
Chengliang Zhong · Peixing You · Xiaoxue Chen · Hao Zhao · Fuchun Sun · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 : Classifiers are Better Experts for Controllable Text Generation »
Askhat Sitdikov · Nikita Balagansky · Daniil Gavrilov · Alexander Markov -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations »
Yingtao Luo · Qiang Liu · Yuntian Chen · Wenbo Hu · TIAN TIAN · Jun Zhu -
2022 : Planning with Large Language Models for Code Generation »
Shun Zhang · Zhenfang Chen · Yikang Shen · Mingyu Ding · Josh Tenenbaum · Chuang Gan -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Hyper-Decision Transformer for Efficient Online Policy Adaptation »
Mengdi Xu · Yuchen Lu · Yikang Shen · Shun Zhang · DING ZHAO · Chuang Gan -
2022 : All are Worth Words: a ViT Backbone for Score-based Diffusion Models »
Fan Bao · Chongxuan LI · Yue Cao · Jun Zhu -
2022 : Why Are Conditional Generative Models Better Than Unconditional Ones? »
Fan Bao · Chongxuan LI · Jiacheng Sun · Jun Zhu -
2022 : Equivariant Graph Hierarchy-based Neural Networks »
Jiaqi Han · Yu Rong · Tingyang Xu · Wenbing Huang -
2022 : Multi-Agent Policy Transfer via Task Relationship Modeling »
Rong-Jun Qin · Feng Chen · Tonghan Wang · Lei Yuan · Xiaoran Wu · Yipeng Kang · Zongzhang Zhang · Chongjie Zhang · Yang Yu -
2022 : VARIATIONAL REPARAMETRIZED POLICY LEARNING WITH DIFFERENTIABLE PHYSICS »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 : On Equivalences between Weight and Function-Space Langevin Dynamics »
Ziyu Wang · Yuhao Zhou · Ruqi Zhang · Jun Zhu -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 Spotlight: Lightning Talks 6A-3 »
Junyu Xie · Chengliang Zhong · Ali Ayub · Sravanti Addepalli · Harsh Rangwani · Jiapeng Tang · Yuchen Rao · Zhiying Jiang · Yuqi Wang · Xingzhe He · Gene Chou · Ilya Chugunov · Samyak Jain · Yuntao Chen · Weidi Xie · Sumukh K Aithal · Carter Fendley · Lev Markhasin · Yiqin Dai · Peixing You · Bastian Wandt · Yinyu Nie · Helge Rhodin · Felix Heide · Ji Xin · Angela Dai · Andrew Zisserman · Bi Wang · Xiaoxue Chen · Mayank Mishra · ZHAO-XIANG ZHANG · Venkatesh Babu R · Justus Thies · Ming Li · Hao Zhao · Venkatesh Babu R · Jimmy Lin · Fuchun Sun · Matthias Niessner · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs »
Songming Liu · Hao Zhongkai · Chengyang Ying · Hang Su · Jun Zhu · Ze Cheng -
2022 Spotlight: SNAKE: Shape-aware Neural 3D Keypoint Field »
Chengliang Zhong · Peixing You · Xiaoxue Chen · Hao Zhao · Fuchun Sun · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations »
Min Zhao · Fan Bao · Chongxuan LI · Jun Zhu -
2022 Spotlight: Multi-agent Dynamic Algorithm Configuration »
Ke Xue · Jiacheng Xu · Lei Yuan · Miqing Li · Chao Qian · Zongzhang Zhang · Yang Yu -
2022 Spotlight: Learning Active Camera for Multi-Object Navigation »
Peihao Chen · Dongyu Ji · Kunyang Lin · Weiwen Hu · Wenbing Huang · Thomas Li · Mingkui Tan · Chuang Gan -
2022 Spotlight: Equivariant Graph Hierarchy-Based Neural Networks »
Jiaqi Han · Wenbing Huang · Tingyang Xu · Yu Rong -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Autoinverse: Uncertainty Aware Inversion of Neural Networks »
Navid Ansari · Hans-peter Seidel · Nima Vahidi Ferdowsi · Vahid Babaei -
2022 Spotlight: Meta-Auto-Decoder for Solving Parametric Partial Differential Equations »
Xiang Huang · Zhanhong Ye · Hongsheng Liu · Shi Ji · Zidong Wang · Kang Yang · Yang Li · Min Wang · Haotian CHU · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Spotlight: Bayesian Optimistic Optimization: Optimistic Exploration for Model-based Reinforcement Learning »
Chenyang Wu · Tianci Li · Zongzhang Zhang · Yang Yu -
2022 Spotlight: PhysGNN: A Physics--Driven Graph Neural Network Based Model for Predicting Soft Tissue Deformation in Image--Guided Neurosurgery »
Yasmin Salehi · Dennis Giannacopoulos -
2022 Spotlight: Inverse Design for Fluid-Structure Interactions using Graph Network Simulators »
Kelsey Allen · Tatiana Lopez-Guevara · Kimberly Stachenfeld · Alvaro Sanchez Gonzalez · Peter Battaglia · Jessica Hamrick · Tobias Pfaff -
2022 Spotlight: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: PALBERT: Teaching ALBERT to Ponder »
Nikita Balagansky · Daniil Gavrilov -
2022 Spotlight: Towards Practical Control of Singular Values of Convolutional Layers »
Alexandra Senderovich · Ekaterina Bulatova · Anton Obukhov · Maxim Rakhuba -
2022 Spotlight: Accelerated Linearized Laplace Approximation for Bayesian Deep Learning »
Zhijie Deng · Feng Zhou · Jun Zhu -
2022 Spotlight: TA-GATES: An Encoding Scheme for Neural Network Architectures »
Xuefei Ning · Zixuan Zhou · Junbo Zhao · Tianchen Zhao · Yiping Deng · Changcheng Tang · Shuang Liang · Huazhong Yang · Yu Wang -
2022 Spotlight: DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps »
Cheng Lu · Yuhao Zhou · Fan Bao · Jianfei Chen · Chongxuan LI · Jun Zhu -
2022 Spotlight: Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language Navigation »
Peihao Chen · Dongyu Ji · Kunyang Lin · Runhao Zeng · Thomas Li · Mingkui Tan · Chuang Gan -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: When to Update Your Model: Constrained Model-based Reinforcement Learning »
Tianying Ji · Yu Luo · Fuchun Sun · Mingxuan Jing · Fengxiang He · Wenbing Huang -
2022 Spotlight: Fast Instrument Learning with Faster Rates »
Ziyu Wang · Yuhao Zhou · Jun Zhu -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Workshop: Machine Learning for Autonomous Driving »
Jiachen Li · Nigamaa Nayakanti · Xinshuo Weng · Daniel Omeiza · Ali Baheri · German Ros · Rowan McAllister -
2022 : Invited talk: Kelsey Allen »
Kelsey Allen -
2022 Workshop: Progress and Challenges in Building Trustworthy Embodied AI »
Chen Tang · Karen Leung · Leilani Gilpin · Jiachen Li · Changliu Liu -
2022 Poster: 3D Concept Grounding on Neural Fields »
Yining Hong · Yilun Du · Chunru Lin · Josh Tenenbaum · Chuang Gan -
2022 Poster: PDSketch: Integrated Domain Programming, Learning, and Planning »
Jiayuan Mao · Tomás Lozano-Pérez · Josh Tenenbaum · Leslie Kaelbling -
2022 Poster: Revisiting Injective Attacks on Recommender Systems »
Haoyang LI · Shimin DI · Lei Chen -
2022 Poster: Molecule Generation by Principal Subgraph Mining and Assembling »
Xiangzhe Kong · Wenbing Huang · Zhixing Tan · Yang Liu -
2022 Poster: Learning Active Camera for Multi-Object Navigation »
Peihao Chen · Dongyu Ji · Kunyang Lin · Weiwen Hu · Wenbing Huang · Thomas Li · Mingkui Tan · Chuang Gan -
2022 Poster: Interaction Modeling with Multiplex Attention »
Fan-Yun Sun · Isaac Kauvar · Ruohan Zhang · Jiachen Li · Mykel J Kochenderfer · Jiajun Wu · Nick Haber -
2022 Poster: Drawing out of Distribution with Neuro-Symbolic Generative Models »
Yichao Liang · Josh Tenenbaum · Tuan Anh Le · Siddharth N -
2022 Poster: Inverse Design for Fluid-Structure Interactions using Graph Network Simulators »
Kelsey Allen · Tatiana Lopez-Guevara · Kimberly Stachenfeld · Alvaro Sanchez Gonzalez · Peter Battaglia · Jessica Hamrick · Tobias Pfaff -
2022 Poster: Meta-Auto-Decoder for Solving Parametric Partial Differential Equations »
Xiang Huang · Zhanhong Ye · Hongsheng Liu · Shi Ji · Zidong Wang · Kang Yang · Yang Li · Min Wang · Haotian CHU · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Poster: Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language Navigation »
Peihao Chen · Dongyu Ji · Kunyang Lin · Runhao Zeng · Thomas Li · Mingkui Tan · Chuang Gan -
2022 Poster: NeoRL: A Near Real-World Benchmark for Offline Reinforcement Learning »
Rong-Jun Qin · Xingyuan Zhang · Songyi Gao · Xiong-Hui Chen · Zewen Li · Weinan Zhang · Yang Yu -
2022 Poster: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games »
Chao Yu · Akash Velu · Eugene Vinitsky · Jiaxuan Gao · Yu Wang · Alexandre Bayen · YI WU -
2022 Poster: PhysGNN: A Physics--Driven Graph Neural Network Based Model for Predicting Soft Tissue Deformation in Image--Guided Neurosurgery »
Yasmin Salehi · Dennis Giannacopoulos -
2022 Poster: Learning Neural Acoustic Fields »
Andrew Luo · Yilun Du · Michael Tarr · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2022 Poster: Benefits of Permutation-Equivariance in Auction Mechanisms »
Tian Qin · Fengxiang He · Dingfeng Shi · Wenbing Huang · Dacheng Tao -
2022 Poster: TA-GATES: An Encoding Scheme for Neural Network Architectures »
Xuefei Ning · Zixuan Zhou · Junbo Zhao · Tianchen Zhao · Yiping Deng · Changcheng Tang · Shuang Liang · Huazhong Yang · Yu Wang -
2022 Poster: On-Device Training Under 256KB Memory »
Ji Lin · Ligeng Zhu · Wei-Ming Chen · Wei-Chen Wang · Chuang Gan · Song Han -
2022 Poster: When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment »
Zhijing Jin · Sydney Levine · Fernando Gonzalez Adauto · Ojasv Kamal · Maarten Sap · Mrinmaya Sachan · Rada Mihalcea · Josh Tenenbaum · Bernhard Schölkopf -
2022 Poster: HandMeThat: Human-Robot Communication in Physical and Social Environments »
Yanming Wan · Jiayuan Mao · Josh Tenenbaum -
2022 Poster: Communicating Natural Programs to Humans and Machines »
Sam Acquaviva · Yewen Pu · Marta Kryven · Theodoros Sechopoulos · Catherine Wong · Gabrielle Ecanow · Maxwell Nye · Michael Tessler · Josh Tenenbaum -
2022 Poster: Multi-agent Dynamic Algorithm Configuration »
Ke Xue · Jiacheng Xu · Lei Yuan · Miqing Li · Chao Qian · Zongzhang Zhang · Yang Yu -
2022 Poster: Bayesian Optimistic Optimization: Optimistic Exploration for Model-based Reinforcement Learning »
Chenyang Wu · Tianci Li · Zongzhang Zhang · Yang Yu -
2022 Poster: Fast Instrument Learning with Faster Rates »
Ziyu Wang · Yuhao Zhou · Jun Zhu -
2022 Poster: Autoinverse: Uncertainty Aware Inversion of Neural Networks »
Navid Ansari · Hans-peter Seidel · Nima Vahidi Ferdowsi · Vahid Babaei -
2022 Poster: Censored Quantile Regression Neural Networks for Distribution-Free Survival Analysis »
Tim Pearce · Jong-Hyeon Jeong · yichen jia · Jun Zhu -
2021 : Spotlight Talk: Learning to solve complex tasks by growing knowledge culturally across generations »
Noah Goodman · Josh Tenenbaum · Michael Tessler · Jason Madeano -
2021 : More Efficient Adversarial Imitation Learning Algorithms With Known and Unknown Transitions »
Tian Xu · Ziniu Li · Yang Yu -
2021 Workshop: Physical Reasoning and Inductive Biases for the Real World »
Krishna Murthy Jatavallabhula · Rika Antonova · Kevin Smith · Hsiao-Yu Tung · Florian Shkurti · Jeannette Bohg · Josh Tenenbaum -
2021 : Layer-Parallel Training of Residual Networks with Auxiliary Variables »
Qi Sun · Hexin Dong · Zewei Chen · WeiZhen Dian · Jiacheng Sun · Yitong Sun · Zhenguo Li · Bin Dong -
2021 Poster: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 Poster: Memory-efficient Patch-based Inference for Tiny Deep Learning »
Ji Lin · Wei-Ming Chen · Han Cai · Chuang Gan · Song Han -
2021 Poster: Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning »
Maxwell Nye · Michael Tessler · Josh Tenenbaum · Brenden Lake -
2021 Poster: Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language »
Mingyu Ding · Zhenfang Chen · Tao Du · Ping Luo · Josh Tenenbaum · Chuang Gan -
2021 Poster: Learning Signal-Agnostic Manifolds of Neural Fields »
Yilun Du · Katie Collins · Josh Tenenbaum · Vincent Sitzmann -
2021 Poster: Stability and Generalization of Bilevel Programming in Hyperparameter Optimization »
Fan Bao · Guoqiang Wu · Chongxuan LI · Jun Zhu · Bo Zhang -
2021 Poster: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Poster: Grammar-Based Grounded Lexicon Learning »
Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum -
2021 Poster: Unsupervised Learning of Compositional Energy Concepts »
Yilun Du · Shuang Li · Yash Sharma · Josh Tenenbaum · Igor Mordatch -
2021 Poster: On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms »
Shuyu Cheng · Guoqiang Wu · Jun Zhu -
2021 Poster: Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems »
Jiayu Chen · Yuanxin Zhang · Yuanfan Xu · Huimin Ma · Huazhong Yang · Jiaming Song · Yu Wang · Yi Wu -
2021 Poster: Scalable Quasi-Bayesian Inference for Instrumental Variable Regression »
Ziyu Wang · Yuhao Zhou · Tongzheng Ren · Jun Zhu -
2021 Poster: A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics »
Kai Xu · Akash Srivastava · Dan Gutfreund · Felix Sosa · Tomer Ullman · Josh Tenenbaum · Charles Sutton -
2021 Poster: Evaluating Efficient Performance Estimators of Neural Architectures »
Xuefei Ning · Changcheng Tang · Wenshuo Li · Zixuan Zhou · Shuang Liang · Huazhong Yang · Yu Wang -
2021 Poster: PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning »
Yining Hong · Li Yi · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2021 Poster: Neural Relightable Participating Media Rendering »
Quan Zheng · Gurprit Singh · Hans-peter Seidel -
2021 Poster: Adaptive Online Packing-guided Search for POMDPs »
Chenyang Wu · Guoyu Yang · Zongzhang Zhang · Yang Yu · Dong Li · Wulong Liu · Jianye Hao -
2021 Poster: AutoGEL: An Automated Graph Neural Network with Explicit Link Information »
Zhili Wang · Shimin DI · Lei Chen -
2021 Poster: Rethinking and Reweighting the Univariate Losses for Multi-Label Ranking: Consistency and Generalization »
Guoqiang Wu · Chongxuan LI · Kun Xu · Jun Zhu -
2021 Poster: AFEC: Active Forgetting of Negative Transfer in Continual Learning »
Liyuan Wang · Mingtian Zhang · Zhongfan Jia · Qian Li · Chenglong Bao · Kaisheng Ma · Jun Zhu · Yi Zhong -
2021 Poster: Accumulative Poisoning Attacks on Real-time Data »
Tianyu Pang · Xiao Yang · Yinpeng Dong · Hang Su · Jun Zhu -
2021 Poster: Augmented Shortcuts for Vision Transformers »
Yehui Tang · Kai Han · Chang Xu · An Xiao · Yiping Deng · Chao Xu · Yunhe Wang -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: 3DP3: 3D Scene Perception via Probabilistic Programming »
Nishad Gothoskar · Marco Cusumano-Towner · Ben Zinberg · Matin Ghavamizadeh · Falk Pollok · Austin Garrett · Josh Tenenbaum · Dan Gutfreund · Vikash Mansinghka -
2021 Poster: When does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? »
Lijie Fan · Sijia Liu · Pin-Yu Chen · Gaoyuan Zhang · Chuang Gan -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 : Winner talks of INTERPRET challenge »
Hengbo Ma -
2020 : Kimberly Stachenfeld - Graph Networks with Spectral Message Passing »
Kimberly Stachenfeld -
2020 : Peter Battaglia - Structured models of physics, objects, and scenes »
Peter Battaglia -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 Workshop: Workshop on Computer Assisted Programming (CAP) »
Augustus Odena · Charles Sutton · Nadia Polikarpova · Josh Tenenbaum · Armando Solar-Lezama · Isil Dillig -
2020 : Invited Talk #3 QnA - Kim Stachenfeld »
Kimberly Stachenfeld · Ida Momennejad · Feryal Behbahani · Raymond Chua -
2020 : Invited Talk #3 Kim Stachenfeld : Structure Learning and the Hippocampal-Entorhinal Circuit »
Kimberly Stachenfeld -
2020 : Invited Talk: Growing into intelligence the human way: What do we start with, and how do we learn the rest? »
Josh Tenenbaum -
2020 : Panel Discussion »
Jessica Hamrick · Klaus Greff · Michelle A. Lee · Irina Higgins · Josh Tenenbaum -
2020 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Kartik Talamadupula · Vivek Srikumar · Chenwei Zhang · Josh Tenenbaum -
2020 : Peter Battaglia »
Peter Battaglia -
2020 Workshop: Differentiable computer vision, graphics, and physics in machine learning »
Krishna Murthy Jatavallabhula · Kelsey Allen · Victoria Dean · Johanna Hansen · Shuran Song · Florian Shkurti · Liam Paull · Derek Nowrouzezahrai · Josh Tenenbaum -
2020 Poster: Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? »
Guoqiang Wu · Jun Zhu -
2020 Poster: MCUNet: Tiny Deep Learning on IoT Devices »
Ji Lin · Wei-Ming Chen · Yujun Lin · john cohn · Chuang Gan · Song Han -
2020 Poster: Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding »
Yongqi Zhang · Quanming Yao · Lei Chen -
2020 Poster: Bi-level Score Matching for Learning Energy-based Latent Variable Models »
Fan Bao · Chongxuan LI · Kun Xu · Hang Su · Jun Zhu · Bo Zhang -
2020 Spotlight: MCUNet: Tiny Deep Learning on IoT Devices »
Ji Lin · Wei-Ming Chen · Yujun Lin · john cohn · Chuang Gan · Song Han -
2020 Spotlight: Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding »
Yongqi Zhang · Quanming Yao · Lei Chen -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2020 Poster: Efficient Learning of Generative Models via Finite-Difference Score Matching »
Tianyu Pang · Kun Xu · Chongxuan LI · Yang Song · Stefano Ermon · Jun Zhu -
2020 Poster: Online Bayesian Goal Inference for Boundedly Rational Planning Agents »
Tan Zhi-Xuan · Jordyn Mann · Tom Silver · Josh Tenenbaum · Vikash Mansinghka -
2020 Poster: Program Synthesis with Pragmatic Communication »
Yewen Pu · Kevin Ellis · Marta Kryven · Josh Tenenbaum · Armando Solar-Lezama -
2020 Poster: Learning Compositional Rules via Neural Program Synthesis »
Maxwell Nye · Armando Solar-Lezama · Josh Tenenbaum · Brenden Lake -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2020 Poster: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Oral: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Poster: Calibrated Reliable Regression using Maximum Mean Discrepancy »
Peng Cui · Wenbo Hu · Jun Zhu -
2020 Poster: TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning »
Han Cai · Chuang Gan · Ligeng Zhu · Song Han -
2020 Poster: Boosting Adversarial Training with Hypersphere Embedding »
Tianyu Pang · Xiao Yang · Yinpeng Dong · Kun Xu · Jun Zhu · Hang Su -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Error Bounds of Imitating Policies and Environments »
Tian Xu · Ziniu Li · Yang Yu -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Adversarial Distributional Training for Robust Deep Learning »
Yinpeng Dong · Zhijie Deng · Tianyu Pang · Jun Zhu · Hang Su -
2020 Poster: Offline Imitation Learning with a Misspecified Simulator »
Shengyi Jiang · Jingcheng Pang · Yang Yu -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Multi-Plane Program Induction with 3D Box Priors »
Yikai Li · Jiayuan Mao · Xiuming Zhang · Bill Freeman · Josh Tenenbaum · Noah Snavely · Jiajun Wu -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: Understanding and Exploring the Network with Stochastic Architectures »
Zhijie Deng · Yinpeng Dong · Shifeng Zhang · Jun Zhu -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 : Neurosymbolic Visual Reasoning »
Chuang Gan -
2019 : Hamiltonian Graph Networks with ODE Integrators »
Alvaro Sanchez Gonzalez -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : Panel Discussion »
Linda Smith · Josh Tenenbaum · Lisa Anne Hendricks · James McClelland · Timothy Lillicrap · Jesse Thomason · Jason Baldridge · Louis-Philippe Morency -
2019 : Closing remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Peter Battaglia: Graph Networks for Learning Physics »
Peter Battaglia -
2019 : Opening Remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Workshop: Perception as generative reasoning: structure, causality, probability »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Poster: Write, Execute, Assess: Program Synthesis with a REPL »
Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models »
Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz -
2019 Poster: Cross-channel Communication Networks »
Jianwei Yang · Zhile Ren · Chuang Gan · Hongyuan Zhu · Devi Parikh -
2019 Poster: Bridging Machine Learning and Logical Reasoning by Abductive Learning »
Wang-Zhou Dai · Qiuling Xu · Yang Yu · Zhi-Hua Zhou -
2019 Poster: Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations »
Kevin Smith · Lingjie Mei · Shunyu Yao · Jiajun Wu · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2019 Poster: Improving Black-box Adversarial Attacks with a Transfer-based Prior »
Shuyu Cheng · Yinpeng Dong · Tianyu Pang · Hang Su · Jun Zhu -
2019 Poster: Visual Concept-Metaconcept Learning »
Chi Han · Jiayuan Mao · Chuang Gan · Josh Tenenbaum · Jiajun Wu -
2019 Poster: Generative Well-intentioned Networks »
Justin Cosentino · Jun Zhu -
2019 Poster: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Spotlight: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Poster: Multi-objects Generation with Amortized Structural Regularization »
Kun Xu · Chongxuan LI · Jun Zhu · Bo Zhang -
2019 Poster: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Spotlight: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Poster: You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle »
Dinghuai Zhang · Tianyuan Zhang · Yiping Lu · Zhanxing Zhu · Bin Dong -
2018 : Poster presentations »
Simon Wiedemann · Huan Wang · Ivan Zhang · Chong Wang · Mohammad Javad Shafiee · Rachel Manzelli · Wenbing Huang · Tassilo Klein · Lifu Zhang · Ashutosh Adhikari · Faisal Qureshi · Giuseppe Castiglione -
2018 : Talk 5: Peter Battaglia - Structure in Physical Intelligence »
Peter Battaglia -
2018 : Adversarial Vision Challenge: Towards More Effective Black-Box Adversarial Training »
Xuefei Ning · Wenshuo Li · Yu Wang -
2018 : Opening Remarks: Josh Tenenbaum »
Josh Tenenbaum -
2018 Workshop: Modeling the Physical World: Learning, Perception, and Control »
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum -
2018 Poster: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Poster: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Oral: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Spotlight: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Visual Object Networks: Image Generation with Disentangled 3D Representations »
Jun-Yan Zhu · Zhoutong Zhang · Chengkai Zhang · Jiajun Wu · Antonio Torralba · Josh Tenenbaum · Bill Freeman -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Poster: Learning to Share and Hide Intentions using Information Regularization »
DJ Strouse · Max Kleiman-Weiner · Josh Tenenbaum · Matt Botvinick · David Schwab -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Poster: Learning to Exploit Stability for 3D Scene Parsing »
Yilun Du · Zhijian Liu · Hector Basevi · Ales Leonardis · Bill Freeman · Josh Tenenbaum · Jiajun Wu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: 3D-Aware Scene Manipulation via Inverse Graphics »
Shunyu Yao · Tzu Ming Hsu · Jun-Yan Zhu · Jiajun Wu · Antonio Torralba · Bill Freeman · Josh Tenenbaum -
2018 Poster: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Spotlight: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Spotlight: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang -
2018 Poster: Graphical Generative Adversarial Networks »
Chongxuan LI · Max Welling · Jun Zhu · Bo Zhang -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Object-oriented intelligence »
Peter Battaglia -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Learn to learn high-dimensional models from few examples »
Josh Tenenbaum -
2017 : Welcome: Josh Tenenbaum »
Josh Tenenbaum -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 : Panel: "How can we characterise the landscape of intelligent systems and locate human-like intelligence in it?" »
Josh Tenenbaum · Gary Marcus · Katja Hofmann -
2017 : Joshua Tenenbaum: 'Types of intelligence: why human-like AI is important' »
Josh Tenenbaum -
2017 Spotlight: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Spotlight: Scene Physics Acquisition via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Learning to See Physics via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Poster: Structured Generative Adversarial Networks »
Zhijie Deng · Hao Zhang · Xiaodan Liang · Luona Yang · Shizhen Xu · Jun Zhu · Eric Xing -
2017 Poster: Triple Generative Adversarial Nets »
Chongxuan LI · Kun Xu · Jun Zhu · Bo Zhang -
2017 Poster: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: MarrNet: 3D Shape Reconstruction via 2.5D Sketches »
Jiajun Wu · Yifan Wang · Tianfan Xue · Xingyuan Sun · Bill Freeman · Josh Tenenbaum -
2017 Poster: Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding »
Wenbing Huang · Mehrtash Harandi · Tong Zhang · Lijie Fan · Fuchun Sun · Junzhou Huang -
2017 Poster: Visual Interaction Networks: Learning a Physics Simulator from Video »
Nicholas Watters · Daniel Zoran · Theophane Weber · Peter Battaglia · Razvan Pascanu · Andrea Tacchetti -
2017 Poster: Self-Supervised Intrinsic Image Decomposition »
Michael Janner · Jiajun Wu · Tejas Kulkarni · Ilker Yildirim · Josh Tenenbaum -
2017 Poster: Subset Selection under Noise »
Chao Qian · Jing-Cheng Shi · Yang Yu · Ke Tang · Zhi-Hua Zhou -
2017 Poster: Population Matching Discrepancy and Applications in Deep Learning »
Jianfei Chen · Chongxuan LI · Yizhong Ru · Jun Zhu -
2017 Tutorial: Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning »
Josh Tenenbaum · Vikash Mansinghka -
2016 : Datasets, Methodology, and Challenges in Intuitive Physics »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Josh Tenenbaum »
Josh Tenenbaum -
2016 : Reverse engineering human cooperation (or, How to build machines that treat people like people) »
Josh Tenenbaum · Max Kleiman-Weiner -
2016 : Naive Physics 101: A Tutorial »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Opening Remarks »
Josh Tenenbaum -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation »
Tejas Kulkarni · Karthik Narasimhan · Ardavan Saeedi · Josh Tenenbaum -
2016 Poster: Kernel Bayesian Inference with Posterior Regularization »
Yang Song · Jun Zhu · Yong Ren -
2016 Poster: Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling »
Jiajun Wu · Chengkai Zhang · Tianfan Xue · Bill Freeman · Josh Tenenbaum -
2016 Poster: Stochastic Gradient Geodesic MCMC Methods »
Chang Liu · Jun Zhu · Yang Song -
2016 Poster: Conditional Generative Moment-Matching Networks »
Yong Ren · Jun Zhu · Jialian Li · Yucen Luo -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2016 Poster: Sampling for Bayesian Program Learning »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 : Discussion Panel with Morning Speakers (Day 1) »
Pedro Domingos · Stephen H Muggleton · Rina Dechter · Josh Tenenbaum -
2015 : Cognitive Foundations for Common-Sense Knowledge Representation and Reasoning »
Josh Tenenbaum -
2015 Poster: Max-Margin Majority Voting for Learning from Crowds »
TIAN TIAN · Jun Zhu -
2015 Poster: Max-Margin Deep Generative Models »
Chongxuan Li · Jun Zhu · Tim Shi · Bo Zhang -
2015 Poster: Softstar: Heuristic-Guided Probabilistic Inference »
Mathew Monfort · Brenden M Lake · Brenden Lake · Brian Ziebart · Patrick Lucey · Josh Tenenbaum -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Poster: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning »
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum -
2015 Poster: Unsupervised Learning by Program Synthesis »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Spectral Methods for Supervised Topic Models »
Yining Wang · Jun Zhu -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Poster: One-shot learning by inverting a compositional causal process »
Brenden M Lake · Russ Salakhutdinov · Josh Tenenbaum -
2013 Poster: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Oral: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Poster: Scalable Inference for Logistic-Normal Topic Models »
Jianfei Chen · Jun Zhu · Zi Wang · Xun Zheng · Bo Zhang -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Poster: Bayesian Nonparametric Maximum Margin Matrix Factorization for Collaborative Prediction »
Minjie Xu · Jun Zhu · Bo Zhang -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Poster: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Spotlight: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Invited Talk: How to Grow a Mind: Statistics, Structure and Abstraction »
Josh Tenenbaum -
2010 Poster: Dynamic Infinite Relational Model for Time-varying Relational Data Analysis »
Katsuhiko Ishiguro · Tomoharu Iwata · Naonori Ueda · Josh Tenenbaum -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2010 Poster: Efficient Relational Learning with Hidden Variable Detection »
Ni Lao · Jun Zhu · Liu Xinwang · Yandong Liu · William Cohen -
2010 Poster: Nonparametric Bayesian Policy Priors for Reinforcement Learning »
Finale P Doshi-Velez · David Wingate · Nicholas Roy · Josh Tenenbaum -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum -
2009 Poster: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Help or Hinder: Bayesian Models of Social Goal Inference »
Tomer D Ullman · Chris L Baker · Owen Macindoe · Owain Evans · Noah Goodman · Josh Tenenbaum -
2009 Spotlight: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Oral: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Poster: Modelling Relational Data using Bayesian Clustered Tensor Factorization »
Ilya Sutskever · Russ Salakhutdinov · Josh Tenenbaum -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang -
2007 Workshop: The Grammar of Vision: Probabilistic Grammar-Based Models for Visual Scene Understanding and Object Categorization »
Virginia Savova · Josh Tenenbaum · Leslie Kaelbling · Alan Yuille -
2007 Spotlight: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Poster: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Poster: A complexity measure for intuitive theories »
Charles Kemp · Noah Goodman · Josh Tenenbaum -
2006 Poster: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Spotlight: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Talk: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Causal inference in sensorimotor integration »
Konrad P Kording · Josh Tenenbaum -
2006 Tutorial: Bayesian Models of Human Learning and Inference »
Josh Tenenbaum