Timezone: »
Lightning Talk
Lightning Talks 2A-1
Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao
- [ 64853 ] Benefits of Additive Noise in Composing Classes with Bounded Capacity
- [ 64857 ] Posterior Matching for Arbitrary Conditioning
- [ 64858 ] "Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
- [ 64859 ] Lipschitz Bandits with Batched Feedback
- [ 64860 ] Re-Analyze Gauss: Bounds for Private Matrix Approximation via Dyson Brownian Motion
- [ 64861 ] Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
- [ 64862 ] Approaching Quartic Convergence Rates for Quasi-Stochastic Approximation with Application to Gradient-Free Optimization
- [ 64863 ] Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution
Q&A on RocketChat immediately following Lightning Talks
Author Information
Caio Kalil Lauand (University of Florida)
Caio Kalil Lauand (caio.kalillauand@ufl.edu) received the B.S.E.E. degree from the University of North Florida. He is a Ph.D. student in the University of Florida under the supervision of Prof. Sean Meyn. His focus is on stochastic approximation and applications such as optimization and reinforcement learning.
Ryan Strauss (Amazon)
Yasong Feng (Fudan University)
lingyu gu (Huazhong University of Science and Technology)
Alireza Fathollah Pour (McMaster University)
Oren Mangoubi (Worcester Polytechnic Institute)
Jianhao Ma (University of Michigan)
Binghui Li (Peking University)
Hassan Ashtiani (McMaster University)
Yongqi Du (Huazhong University of Science and Technology)
Salar Fattahi (University of Michigan)
Sean Meyn (University of Florida)
Jikai Jin (Peking University)
Nisheeth Vishnoi (Yale University)
zengfeng Huang (Fudan University)
Junier B Oliva (Carnegie Mellon University)
yuan zhang (hikvision)
Han Zhong (Peking University)
Tianyu Wang (Fudan University)
John Hopcroft (Cornell University)
Di Xie (Hikvision Research Institute)
Shiliang Pu (Zhejiang University)
Liwei Wang (Peking University)
Robert Qiu (Huazhong University of Science and Technology)
Zhenyu Liao (Huazhong University of Science and Technology)
More from the Same Authors
-
2021 Spotlight: Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning »
Hanzhe Hu · Fangyun Wei · Han Hu · Qiwei Ye · Jinshi Cui · Liwei Wang -
2021 Spotlight: Coresets for Time Series Clustering »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2021 : Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery »
Jianhao Ma · Salar Fattahi -
2022 Poster: Benefits of Additive Noise in Composing Classes with Bounded Capacity »
Alireza Fathollah Pour · Hassan Ashtiani -
2022 Poster: Lipschitz Bandits with Batched Feedback »
Yasong Feng · zengfeng Huang · Tianyu Wang -
2022 Poster: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds »
Haiyang Wang · Lihe Ding · Shaocong Dong · Shaoshuai Shi · Aoxue Li · Jianan Li · Zhenguo Li · Liwei Wang -
2022 Poster: SAViT: Structure-Aware Vision Transformer Pruning via Collaborative Optimization »
Chuanyang Zheng · zheyang li · Kai Zhang · Zhi Yang · Wenming Tan · Jun Xiao · Ye Ren · Shiliang Pu -
2022 Poster: "Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach »
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao -
2022 : Minimax Optimal Kernel Operator Learning via Multilevel Training »
Jikai Jin · Yiping Lu · Jose Blanchet · Lexing Ying -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: SAViT: Structure-Aware Vision Transformer Pruning via Collaborative Optimization »
Chuanyang Zheng · zheyang li · Kai Zhang · Zhi Yang · Wenming Tan · Jun Xiao · Ye Ren · Shiliang Pu -
2022 Spotlight: Lightning Talks 2A-2 »
Harikrishnan N B · Jianhao Ding · Juha Harviainen · Yizhen Wang · Lue Tao · Oren Mangoubi · Tong Bu · Nisheeth Vishnoi · Mohannad Alhanahnah · Mikko Koivisto · Aditi Kathpalia · Lei Feng · Nithin Nagaraj · Hongxin Wei · Xiaozhu Meng · Petteri Kaski · Zhaofei Yu · Tiejun Huang · Ke Wang · Jinfeng Yi · Jian Liu · Sheng-Jun Huang · Mihai Christodorescu · Songcan Chen · Somesh Jha -
2022 Spotlight: Benefits of Additive Noise in Composing Classes with Bounded Capacity »
Alireza Fathollah Pour · Hassan Ashtiani -
2022 Spotlight: Posterior Matching for Arbitrary Conditioning »
Ryan Strauss · Junier B Oliva -
2022 Spotlight: "Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach »
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao -
2022 Spotlight: Lipschitz Bandits with Batched Feedback »
Yasong Feng · zengfeng Huang · Tianyu Wang -
2022 Spotlight: Re-Analyze Gauss: Bounds for Private Matrix Approximation via Dyson Brownian Motion »
Oren Mangoubi · Nisheeth Vishnoi -
2022 Spotlight: Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power »
Binghui Li · Jikai Jin · Han Zhong · John Hopcroft · Liwei Wang -
2022 Spotlight: Approaching Quartic Convergence Rates for Quasi-Stochastic Approximation with Application to Gradient-Free Optimization »
Caio Kalil Lauand · Sean Meyn -
2022 Spotlight: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2022 Spotlight: Sampling from Log-Concave Distributions with Infinity-Distance Guarantees »
Oren Mangoubi · Nisheeth Vishnoi -
2022 Poster: Sampling from Log-Concave Distributions with Infinity-Distance Guarantees »
Oren Mangoubi · Nisheeth Vishnoi -
2022 Poster: Approaching Quartic Convergence Rates for Quasi-Stochastic Approximation with Application to Gradient-Free Optimization »
Caio Kalil Lauand · Sean Meyn -
2022 Poster: Is $L^2$ Physics Informed Loss Always Suitable for Training Physics Informed Neural Network? »
Chuwei Wang · Shanda Li · Di He · Liwei Wang -
2022 Poster: Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power »
Binghui Li · Jikai Jin · Han Zhong · John Hopcroft · Liwei Wang -
2022 Poster: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2022 Poster: Your Transformer May Not be as Powerful as You Expect »
Shengjie Luo · Shanda Li · Shuxin Zheng · Tie-Yan Liu · Liwei Wang · Di He -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2022 Poster: Fair Ranking with Noisy Protected Attributes »
Anay Mehrotra · Nisheeth Vishnoi -
2022 Poster: Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective »
Bohang Zhang · Du Jiang · Di He · Liwei Wang -
2022 Poster: Re-Analyze Gauss: Bounds for Private Matrix Approximation via Dyson Brownian Motion »
Oren Mangoubi · Nisheeth Vishnoi -
2022 Poster: Posterior Matching for Arbitrary Conditioning »
Ryan Strauss · Junier B Oliva -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 Poster: Fair Classification with Adversarial Perturbations »
L. Elisa Celis · Anay Mehrotra · Nisheeth Vishnoi -
2021 Poster: Privately Learning Mixtures of Axis-Aligned Gaussians »
Ishaq Aden-Ali · Hassan Ashtiani · Christopher Liaw -
2021 Poster: Scalable Inference of Sparsely-changing Gaussian Markov Random Fields »
Salar Fattahi · Andres Gomez -
2021 Poster: Understanding Bandits with Graph Feedback »
Houshuang Chen · zengfeng Huang · Shuai Li · Chihao Zhang -
2021 Poster: Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis »
Jikai Jin · Bohang Zhang · Haiyang Wang · Liwei Wang -
2021 Poster: BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation »
Mingguo He · Zhewei Wei · zengfeng Huang · Hongteng Xu -
2021 Poster: Coresets for Time Series Clustering »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2021 Poster: Breaking the Moments Condition Barrier: No-Regret Algorithm for Bandits with Super Heavy-Tailed Payoffs »
Han Zhong · Jiayi Huang · Lin Yang · Liwei Wang -
2021 Poster: Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization »
Jialun Zhang · Salar Fattahi · Richard Y Zhang -
2021 Poster: Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding »
Shengjie Luo · Shanda Li · Tianle Cai · Di He · Dinglan Peng · Shuxin Zheng · Guolin Ke · Liwei Wang · Tie-Yan Liu -
2021 Poster: STEP: Out-of-Distribution Detection in the Presence of Limited In-Distribution Labeled Data »
Zhi Zhou · Lan-Zhe Guo · Zhanzhan Cheng · Yu-Feng Li · Shiliang Pu -
2021 Poster: Towards a Theoretical Framework of Out-of-Distribution Generalization »
Haotian Ye · Chuanlong Xie · Tianle Cai · Ruichen Li · Zhenguo Li · Liwei Wang -
2021 Poster: Arbitrary Conditional Distributions with Energy »
Ryan Strauss · Junier Oliva -
2021 Poster: Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning »
Hanzhe Hu · Fangyun Wei · Han Hu · Qiwei Ye · Jinshi Cui · Liwei Wang -
2020 Poster: Improved Analysis of Clipping Algorithms for Non-convex Optimization »
Bohang Zhang · Jikai Jin · Cong Fang · Liwei Wang -
2020 Poster: Locally Differentially Private (Contextual) Bandits Learning »
Kai Zheng · Tianle Cai · Weiran Huang · Zhenguo Li · Liwei Wang -
2020 Poster: Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot »
Jingtong Su · Yihang Chen · Tianle Cai · Tianhao Wu · Ruiqi Gao · Liwei Wang · Jason Lee -
2020 Poster: Zap Q-Learning With Nonlinear Function Approximation »
Shuhang Chen · Adithya M Devraj · Fan Lu · Ana Busic · Sean Meyn -
2020 Poster: RepPoints v2: Verification Meets Regression for Object Detection »
Yihong Chen · Zheng Zhang · Yue Cao · Liwei Wang · Stephen Lin · Han Hu -
2020 Poster: Coresets for Regressions with Panel Data »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Spotlight: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Poster: McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds »
Rui (Ray) Zhang · Xingwu Liu · Yuyi Wang · Liwei Wang -
2019 Spotlight: McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds »
Rui (Ray) Zhang · Xingwu Liu · Yuyi Wang · Liwei Wang -
2019 Poster: Disentangled behavioural representations »
Amir Dezfouli · Hassan Ashtiani · Omar Ghattas · Richard Nock · Peter Dayan · Cheng Soon Ong -
2019 Poster: Online sampling from log-concave distributions »
Holden Lee · Oren Mangoubi · Nisheeth Vishnoi -
2019 Poster: Optimal Sparsity-Sensitive Bounds for Distributed Mean Estimation »
zengfeng Huang · Ziyue Huang · Yilei WANG · Ke Yi -
2019 Poster: Coresets for Clustering with Fairness Constraints »
Lingxiao Huang · Shaofeng Jiang · Nisheeth Vishnoi -
2018 Poster: Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation »
Liwei Wang · Lunjia Hu · Jiayuan Gu · Zhiqiang Hu · Yue Wu · Kun He · John Hopcroft -
2018 Spotlight: Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation »
Liwei Wang · Lunjia Hu · Jiayuan Gu · Zhiqiang Hu · Yue Wu · Kun He · John Hopcroft -
2018 Poster: Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo »
Oren Mangoubi · Nisheeth Vishnoi -
2018 Poster: Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes »
Hassan Ashtiani · Shai Ben-David · Nicholas Harvey · Christopher Liaw · Abbas Mehrabian · Yaniv Plan -
2018 Oral: Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes »
Hassan Ashtiani · Shai Ben-David · Nicholas Harvey · Christopher Liaw · Abbas Mehrabian · Yaniv Plan -
2018 Poster: FRAGE: Frequency-Agnostic Word Representation »
Chengyue Gong · Di He · Xu Tan · Tao Qin · Liwei Wang · Tie-Yan Liu -
2017 Poster: Zap Q-Learning »
Adithya M Devraj · Sean Meyn -
2017 Poster: Decoding with Value Networks for Neural Machine Translation »
Di He · Hanqing Lu · Yingce Xia · Tao Qin · Liwei Wang · Tie-Yan Liu -
2017 Poster: The Expressive Power of Neural Networks: A View from the Width »
Zhou Lu · Hongming Pu · Feicheng Wang · Zhiqiang Hu · Liwei Wang -
2016 Poster: Dual Learning for Machine Translation »
Di He · Yingce Xia · Tao Qin · Liwei Wang · Nenghai Yu · Tie-Yan Liu · Wei-Ying Ma -
2016 Poster: Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations »
Kirthevasan Kandasamy · Gautam Dasarathy · Junier B Oliva · Jeff Schneider · Barnabas Poczos -
2016 Poster: A Powerful Generative Model Using Random Weights for the Deep Image Representation »
Kun He · Yan Wang · John Hopcroft -
2013 Poster: Sign Cauchy Projections and Chi-Square Kernel »
Ping Li · Gennady Samorodnitsk · John Hopcroft -
2013 Poster: Efficient Algorithm for Privately Releasing Smooth Queries »
Ziteng Wang · Kai Fan · Jiaqi Zhang · Liwei Wang -
2012 Poster: Dimensionality Dependent PAC-Bayes Margin Bound »
Chi Jin · Liwei Wang -
2009 Poster: Sufficient Conditions for Agnostic Active Learnable »
Liwei Wang