Timezone: »
Constructing adversarial examples usually requires labels, which provide a loss gradient to construct the example. We show that for batch normalized architectures, intermediate latents that are produced after a batch normalization step suffice to produce adversarial examples using an intermediate loss solely utilizing angular deviations, without any label. We motivate our loss through the geometry of batch normed representations and concentration on a known hypersphere. Our losses build on and expand intermediate latent based attacks that usually require labels. The success of our method implies that leakage of intermediate representations may suffice to create a security breach for deployed models, which persist even when the model is transferred to downstream usage. We further show that removal of batch norm weakens our attack significantly, suggesting that batch norm's contribution to adversarial vulnerability may be understood by analyzing such attacks.
Author Information
Amur Ghose (University of Waterloo)
I graduated from the Indian Inst. of Technology, Kanpur in 2018 and moved to UWaterloo for a master's.
Apurv Gupta (IBM Consulting)
Yaoliang Yu (University of Waterloo)
Pascal Poupart (University of Waterloo & Vector Institute)
More from the Same Authors
-
2022 Poster: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Graph neural networks for Ramsey graphs »
Amur Ghose · Amit Levi · Yingxueff Zhang -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 Spotlight: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 Workshop: Second Workshop on Efficient Natural Language and Speech Processing (ENLSP-II) »
Mehdi Rezagholizadeh · Peyman Passban · Yue Dong · Lili Mou · Pascal Poupart · Ali Ghodsi · Qun Liu -
2022 Poster: Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game »
Guiliang Liu · Yudong Luo · Oliver Schulte · Pascal Poupart -
2021 : Best Papers and Closing Remarks »
Ali Ghodsi · Pascal Poupart -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 Workshop: Efficient Natural Language and Speech Processing (Models, Training, and Inference) »
Mehdi Rezaghoizadeh · Lili Mou · Yue Dong · Pascal Poupart · Ali Ghodsi · Qun Liu -
2021 : Opening Speech »
Pascal Poupart -
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2021 Poster: Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning »
Guiliang Liu · Xiangyu Sun · Oliver Schulte · Pascal Poupart -
2020 Poster: Learning Agent Representations for Ice Hockey »
Guiliang Liu · Oliver Schulte · Pascal Poupart · Mike Rudd · Mehrsan Javan -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 Poster: Multivariate Triangular Quantile Maps for Novelty Detection »
Jingjing Wang · Sun Sun · Yaoliang Yu -
2018 Workshop: Reinforcement Learning under Partial Observability »
Joni Pajarinen · Chris Amato · Pascal Poupart · David Hsu -
2018 Poster: Deep Homogeneous Mixture Models: Representation, Separation, and Approximation »
Priyank Jaini · Pascal Poupart · Yaoliang Yu -
2018 Poster: Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks »
Agastya Kalra · Abdullah Rashwan · Wei-Shou Hsu · Pascal Poupart · Prashant Doshi · George Trimponias -
2018 Poster: Unsupervised Video Object Segmentation for Deep Reinforcement Learning »
Vikash Goel · Jameson Weng · Pascal Poupart -
2018 Poster: Monte-Carlo Tree Search for Constrained POMDPs »
Jongmin Lee · Geon-Hyeong Kim · Pascal Poupart · Kee-Eung Kim -
2017 Poster: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2017 Spotlight: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2016 Poster: Online Bayesian Moment Matching for Topic Modeling with Unknown Number of Topics »
Wei-Shou Hsu · Pascal Poupart -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon -
2013 Poster: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Oral: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Poster: Polar Operators for Structured Sparse Estimation »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2013 Poster: Better Approximation and Faster Algorithm Using the Proximal Average »
Yao-Liang Yu -
2012 Poster: Convex Multi-view Subspace Learning »
Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans -
2012 Poster: Accelerated Training for Matrix-norm Regularization: A Boosting Approach »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2012 Poster: A Polynomial-time Form of Robust Regression »
Yao-Liang Yu · Özlem Aslan · Dale Schuurmans -
2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans -
2009 Poster: A General Projection Property for Distribution Families »
Yao-Liang Yu · Yuxi Li · Dale Schuurmans · Csaba Szepesvari