Timezone: »
Finding classifiers robust to adversarial examples is critical for their safe deployment. Determining the robustness of the best possible classifier under a given threat model and comparing it to that achieved by state-of-the-art training methods is thus an important diagnostic tool. In this paper, we find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset. We provide a general framework for computing lower bounds on 0-1 loss based on solving a linear program (LP). This LP is constructed based on what we introduce as a conflict hypergraph, and we explore different settings in the construction of this hypergraph and their impact on the computed lower bound. Our work enables, for the first time, an analysis of the gap to optimal robustness for classifiers in the multi-class setting.
Author Information
Sihui Dai (Princeton University)
Wenxin Ding (University of Chicago)
Arjun Nitin Bhagoji (University of Chicago)
Daniel Cullina (Penn State University)
Prateek Mittal (Princeton University)
Ben Zhao (University of Chicago)
More from the Same Authors
-
2021 : RobustBench: a standardized adversarial robustness benchmark »
Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein -
2021 : A Novel Self-Distillation Architecture to Defeat Membership Inference Attacks »
Xinyu Tang · Saeed Mahloujifar · Liwei Song · Virat Shejwalkar · Amir Houmansadr · Prateek Mittal -
2022 Poster: Formulating Robustness Against Unforeseen Attacks »
Sihui Dai · Saeed Mahloujifar · Prateek Mittal -
2022 Poster: Finding Naturally Occurring Physical Backdoors in Image Datasets »
Emily Wenger · Roma Bhattacharjee · Arjun Nitin Bhagoji · Josephine Passananti · Emilio Andere · Heather Zheng · Ben Zhao -
2022 Poster: Understanding Robust Learning through the Lens of Representation Similarities »
Christian Cianfarani · Arjun Nitin Bhagoji · Vikash Sehwag · Ben Zhao · Heather Zheng · Prateek Mittal -
2022 Poster: Renyi Differential Privacy of Propose-Test-Release and Applications to Private and Robust Machine Learning »
Jiachen T. Wang · Saeed Mahloujifar · Shouda Wang · Ruoxi Jia · Prateek Mittal -
2020 Poster: Neural Networks with Recurrent Generative Feedback »
Yujia Huang · James Gornet · Sihui Dai · Zhiding Yu · Tan Nguyen · Doris Tsao · Anima Anandkumar -
2020 Poster: HYDRA: Pruning Adversarially Robust Neural Networks »
Vikash Sehwag · Shiqi Wang · Prateek Mittal · Suman Jana -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · GaĆ«l Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Lower Bounds on Adversarial Robustness from Optimal Transport »
Arjun Nitin Bhagoji · Daniel Cullina · Prateek Mittal -
2018 Poster: PAC-learning in the presence of adversaries »
Daniel Cullina · Arjun Nitin Bhagoji · Prateek Mittal