Timezone: »
Recently, various methods have been introduced to address the OOD detection problem with training outlier exposure. These methods usually count on discriminative softmax metric or energy method to screen OOD samples. In this paper, we probe an alternative hypothesis on OOD detection by constructing a novel latent variable model based on independent component analysis (ICA) techniques. This novel method named Conditional-i builds upon the probabilistic formulation, and applies the Hilbert-Schmidt Independence Criteria that offers a convenient solution for optimizing variable dependencies. Conditional-i exclusively encodes the useful class condition into the probabilistic model, which provides the desired convenience in delivering theoretical support for the OOD detection task. To facilitate the implementation of the Conditional-i model, we construct unique memory bank architectures that allow for convenient end-to-end training within a tractable budget. Empirical results demonstrate an evident performance boost on benchmarks against SOTA methods. We also provide valuable theoretical justifications that our training strategy is guaranteed to bound the error in the context of OOD detection. Code is available at: https://github.com/OODHSIC/conditional-i.
Author Information
Yu Wang (Qiyuan Lab)
Jingjing Zou (University of California, San Diego)
Jingyang Lin (SUN YAT-SEN UNIVERSITY)
Qing Ling (Sun Yat-Sen University)
Yingwei Pan (JD AI Research)
Ting Yao (JD AI Research)
Tao Mei (AI Research of JD.com)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Out-of-Distribution Detection via Conditional Kernel Independence Model »
Dates n/a. Room
More from the Same Authors
-
2022 Poster: Generalized One-shot Domain Adaptation of Generative Adversarial Networks »
Zicheng Zhang · Yinglu Liu · Congying Han · Tiande Guo · Ting Yao · Tao Mei -
2022 Spotlight: Lightning Talks 6B-4 »
Junjie Chen · Chuanxia Zheng · JINLONG LI · Yu Shi · Shichao Kan · Yu Wang · FermÃn Travi · Ninh Pham · Lei Chai · Guobing Gan · Tung-Long Vuong · Gonzalo Ruarte · Tao Liu · Li Niu · Jingjing Zou · Zequn Jie · Peng Zhang · Ming LI · Yixiong Liang · Guolin Ke · Jianfei Cai · Gaston Bujia · Sunzhu Li · Siyuan Zhou · Jingyang Lin · Xu Wang · Min Li · Zhuoming Chen · Qing Ling · Xiaolin Wei · Xiuqing Lu · Shuxin Zheng · Dinh Phung · Yigang Cen · Jianlou Si · Juan Esteban Kamienkowski · Jianxin Wang · Chen Qian · Lin Ma · Benyou Wang · Yingwei Pan · Tie-Yan Liu · Liqing Zhang · Zhihai He · Ting Yao · Tao Mei -
2021 Poster: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration »
Yu Wang · Jingyang Lin · Jingjing Zou · Yingwei Pan · Ting Yao · Tao Mei -
2020 Poster: Joint Contrastive Learning with Infinite Possibilities »
Qi Cai · Yu Wang · Yingwei Pan · Ting Yao · Tao Mei -
2020 Spotlight: Joint Contrastive Learning with Infinite Possibilities »
Qi Cai · Yu Wang · Yingwei Pan · Ting Yao · Tao Mei -
2018 Poster: Solving Non-smooth Constrained Programs with Lower Complexity than $\mathcal{O}(1/\varepsilon)$: A Primal-Dual Homotopy Smoothing Approach »
Xiaohan Wei · Hao Yu · Qing Ling · Michael Neely