Timezone: »
Spotlight
Fairness in Federated Learning via Core-Stability
Bhaskar Ray Chaudhury · Linyi Li · Mintong Kang · Bo Li · Ruta Mehta
Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data, especially in the non-IID setting, makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively ``unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given $N$ agents, there is no subset of agents $S$ that can benefit significantly by forming a coalition among themselves based on their utilities $U_N$ and $U_S$ (i.e., $ (|S|/ N) U_S \geq U_N$). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality (each agent gets at least $1/n$ fraction of the best utility that she can get from any predictor) and Pareto-optimality (there exists no model that can increase the utility of an agent without decreasing the utility of another), two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while maintaining similar accuracy.
Author Information
Bhaskar Ray Chaudhury
Linyi Li (University of Illinois Urbana-Champaign)
A Ph.D. candidate working on robust machine learning and verification.
Mintong Kang (University of Illinois at Urbana-Champaign)
Bo Li (UIUC)
Ruta Mehta (UIUC)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Fairness in Federated Learning via Core-Stability »
Thu. Dec 1st 05:00 -- 07:00 PM Room Hall J #809
More from the Same Authors
-
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : What Would Jiminy Cricket Do? Towards Agents That Behave Morally »
Dan Hendrycks · Mantas Mazeika · Andy Zou · Sahil Patel · Christine Zhu · Jesus Navarro · Dawn Song · Bo Li · Jacob Steinhardt -
2022 Poster: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 : Improving Vertical Federated Learning by Efficient Communication with ADMM »
Chulin Xie · Pin-Yu Chen · Ce Zhang · Bo Li -
2022 : Benchmarking Robustness under Distribution Shift of Multimodal Image-Text Models »
Jielin Qiu · Yi Zhu · Xingjian Shi · Zhiqiang Tang · DING ZHAO · Bo Li · Mu Li -
2022 : DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 : Fifteen-minute Competition Overview Video »
Nathan Drenkow · Raman Arora · Gino Perrotta · Todd Neller · Ryan Gardner · Mykel J Kochenderfer · Jared Markowitz · Corey Lowman · Casey Richardson · Bo Li · Bart Paulhamus · Ashley J Llorens · Andrew Newman -
2022 : Assembling Existing Labels from Public Datasets to\\Diagnose Novel Diseases: COVID-19 in Late 2019 »
Zengle Zhu · Mintong Kang · Alan Yuille · Zongwei Zhou -
2022 : On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
ZUXIN LIU · Zijian Guo · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · DING ZHAO -
2022 : Closing Remarks »
Huan Zhang · Linyi Li -
2022 : Panel Discussion »
Kamalika Chaudhuri · Been Kim · Dorsa Sadigh · Huan Zhang · Linyi Li -
2022 : Contributed Talk: DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : Introduction and Opening Remarks »
Huan Zhang · Linyi Li -
2022 Competition: The Trojan Detection Challenge »
Mantas Mazeika · Dan Hendrycks · Huichen Li · Xiaojun Xu · Andy Zou · Sidney Hough · Arezoo Rajabi · Dawn Song · Radha Poovendran · Bo Li · David Forsyth -
2022 Spotlight: LOT: Layer-wise Orthogonal Training on Improving l2 Certified Robustness »
Xiaojun Xu · Linyi Li · Bo Li -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Competition: Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2022 Spotlight: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Spotlight: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : Trustworthy Machine Learning in Autonomous Driving »
Bo Li -
2022 Workshop: Decentralization and Trustworthy Machine Learning in Web3: Methodologies, Platforms, and Applications »
Jian Lou · Zhiguang Wang · Chejian Xu · Bo Li · Dawn Song -
2022 : Invited Talk #5, Privacy-Preserving Data Synthesis for General Purposes, Bo Li »
Bo Li -
2022 : Fairness Panel »
Freedom Gumedze · Rachel Cummings · Bo Li · Robert Tillman · Edward Choi -
2022 : Trustworthy Federated Learning »
Bo Li -
2022 Poster: Improving Certified Robustness via Statistical Learning with Logical Reasoning »
Zhuolin Yang · Zhikuan Zhao · Boxin Wang · Jiawei Zhang · Linyi Li · Hengzhi Pei · Bojan Karlaš · Ji Liu · Heng Guo · Ce Zhang · Bo Li -
2022 Poster: Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset Copyright Protection »
Yiming Li · Yang Bai · Yong Jiang · Yong Yang · Shu-Tao Xia · Bo Li -
2022 Poster: Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning »
Wenhao Ding · Haohong Lin · Bo Li · DING ZHAO -
2022 Poster: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Poster: LOT: Layer-wise Orthogonal Training on Improving l2 Certified Robustness »
Xiaojun Xu · Linyi Li · Bo Li -
2022 Poster: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: SafeBench: A Benchmarking Platform for Safety Evaluation of Autonomous Vehicles »
Chejian Xu · Wenhao Ding · Weijie Lyu · ZUXIN LIU · Shuai Wang · Yihan He · Hanjiang Hu · DING ZHAO · Bo Li -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 : Career and Life: Panel Discussion - Bo Li, Adriana Romero-Soriano, Devi Parikh, and Emily Denton »
Emily Denton · Devi Parikh · Bo Li · Adriana Romero -
2021 : Live Q&A with Bo Li »
Bo Li -
2021 : Invited talk – Trustworthy Machine Learning via Logic Inference, Bo Li »
Bo Li -
2021 : Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models »
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li -
2021 Poster: G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators »
Yunhui Long · Boxin Wang · Zhuolin Yang · Bhavya Kailkhura · Aston Zhang · Carl Gunter · Bo Li -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2021 Poster: TRS: Transferability Reduced Ensemble via Promoting Gradient Diversity and Model Smoothness »
Zhuolin Yang · Linyi Li · Xiaojun Xu · Shiliang Zuo · Qian Chen · Pan Zhou · Benjamin Rubinstein · Ce Zhang · Bo Li -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: On Convergence of Nearest Neighbor Classifiers over Feature Transformations »
Luka Rimanic · Cedric Renggli · Bo Li · Ce Zhang -
2019 Poster: Multiclass Performance Metric Elicitation »
Gaurush Hiranandani · Shant Boodaghians · Ruta Mehta · Sanmi Koyejo