Timezone: »
Neural rendering can be used to reconstruct implicit representations of shapes without 3D supervision. However, current neural surface reconstruction methods have difficulty learning high-frequency geometry details, so the reconstructed shapes are often over-smoothed. We develop HF-NeuS, a novel method to improve the quality of surface reconstruction in neural rendering. We follow recent work to model surfaces as signed distance functions (SDFs). First, we offer a derivation to analyze the relationship between the SDF, the volume density, the transparency function, and the weighting function used in the volume rendering equation and propose to model transparency as a transformed SDF. Second, we observe that attempting to jointly encode high-frequency and low-frequency components in a single SDF leads to unstable optimization. We propose to decompose the SDF into base and displacement functions with a coarse-to-fine strategy to increase the high-frequency details gradually. Finally, we design an adaptive optimization strategy that makes the training process focus on improving those regions near the surface where the SDFs have artifacts. Our qualitative and quantitative results show that our method can reconstruct fine-grained surface details and obtain better surface reconstruction quality than the current state of the art. Code available at https://github.com/yiqun-wang/HFS.
Author Information
Yiqun Wang (King Abdullah University of Science and Technology)
Ivan Skorokhodov (KAUST)
Peter Wonka (KAUST)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: HF-NeuS: Improved Surface Reconstruction Using High-Frequency Details »
Wed. Nov 30th through Dec 1st Room Hall J #420
More from the Same Authors
-
2022 Spotlight: EpiGRAF: Rethinking training of 3D GANs »
Ivan Skorokhodov · Sergey Tulyakov · Yiqun Wang · Peter Wonka -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2022 Poster: EpiGRAF: Rethinking training of 3D GANs »
Ivan Skorokhodov · Sergey Tulyakov · Yiqun Wang · Peter Wonka -
2022 Poster: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma