Timezone: »
Designing physical artifacts that serve a purpose---such as tools and other functional structures---is central to engineering as well as everyday human behavior. Though automating design using machine learning has tremendous promise, existing methods are often limited by the task-dependent distributions they were exposed to during training. Here we showcase a task-agnostic approach to inverse design, by combining general-purpose graph network simulators with gradient-based design optimization. This constitutes a simple, fast, and reusable approach that solves high-dimensional problems with complex physical dynamics, including designing surfaces and tools to manipulate fluid flows and optimizing the shape of an airfoil to minimize drag. This framework produces high-quality designs by propagating gradients through trajectories of hundreds of steps, even when using models that were pre-trained for single-step predictions on data substantially different from the design tasks. In our fluid manipulation tasks, the resulting designs outperformed those found by sampling-based optimization techniques. In airfoil design, they matched the quality of those obtained with a specialized solver. Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization across a variety of fluid-structure interaction domains.
Author Information
Kelsey Allen (DeepMind)
Tatiana Lopez-Guevara (DeepMind)
Kimberly Stachenfeld (DeepMind)
Alvaro Sanchez Gonzalez (DeepMind)
Peter Battaglia (DeepMind)
Jessica Hamrick (DeepMind)
Tobias Pfaff (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Inverse Design for Fluid-Structure Interactions using Graph Network Simulators »
Wed. Nov 30th through Dec 1st Room Hall J #607
More from the Same Authors
-
2020 : Learning Mesh-Based Simulation with Graph Networks »
Tobias Pfaff · Meire Fortunato · Alvaro Sanchez Gonzalez · Peter Battaglia -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 Spotlight: Lightning Talks 4B-1 »
Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 : Invited talk: Kelsey Allen »
Kelsey Allen -
2020 : Kimberly Stachenfeld - Graph Networks with Spectral Message Passing »
Kimberly Stachenfeld -
2020 : Peter Battaglia - Structured models of physics, objects, and scenes »
Peter Battaglia -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Invited Talk #3 QnA - Kim Stachenfeld »
Kimberly Stachenfeld · Ida Momennejad · Feryal Behbahani · Raymond Chua -
2020 : Invited Talk #3 Kim Stachenfeld : Structure Learning and the Hippocampal-Entorhinal Circuit »
Kimberly Stachenfeld -
2020 : Peter Battaglia »
Peter Battaglia -
2020 Poster: Discovering Symbolic Models from Deep Learning with Inductive Biases »
Miles Cranmer · Alvaro Sanchez Gonzalez · Peter Battaglia · Rui Xu · Kyle Cranmer · David Spergel · Shirley Ho -
2019 : Hamiltonian Graph Networks with ODE Integrators »
Alvaro Sanchez Gonzalez -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : Closing remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 : Peter Battaglia: Graph Networks for Learning Physics »
Peter Battaglia -
2019 : Opening Remarks »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2019 Workshop: Perception as generative reasoning: structure, causality, probability »
Dan Rosenbaum · Marta Garnelo · Peter Battaglia · Kelsey Allen · Ilker Yildirim -
2018 : Talk 5: Peter Battaglia - Structure in Physical Intelligence »
Peter Battaglia -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2017 : Object-oriented intelligence »
Peter Battaglia -
2017 Poster: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Visual Interaction Networks: Learning a Physics Simulator from Video »
Nicholas Watters · Daniel Zoran · Theophane Weber · Peter Battaglia · Razvan Pascanu · Andrea Tacchetti -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu