Timezone: »
Spotlight
The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization
Dmitry Kovalev · Alexander Gasnikov
In this paper, we study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems. Arjevani et al. (2019) established the lower bound $\Omega\left(\epsilon^{-2/(3p+1)}\right)$ on the number of the $p$-th order oracle calls required by an algorithm to find an $\epsilon$-accurate solution to the problem, where the $p$-th order oracle stands for the computation of the objective function value and the derivatives up to the order $p$. However, the existing state-of-the-art high-order methods of Gasnikov et al. (2019b); Bubeck et al. (2019); Jiang et al. (2019) achieve the oracle complexity $\mathcal{O}\left(\epsilon^{-2/(3p+1)} \log (1/\epsilon)\right)$, which does not match the lower bound. The reason for this is that these algorithms require performing a complex binary search procedure, which makes them neither optimal nor practical. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\epsilon^{-2/(3p+1)}\right)$ $p$-th order oracle complexity.
Author Information
Dmitry Kovalev (UCLouvain)
Alexander Gasnikov (Moscow Institute of Physics and Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization »
Tue. Nov 29th through Wed the 30th Room Hall J #827
More from the Same Authors
-
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Decentralized Personalized Federated Min-Max Problems »
Ekaterina Borodich · Aleksandr Beznosikov · Abdurakhmon Sadiev · Vadim Sushko · Alexander Gasnikov -
2022 : Effects of momentum scaling for SGD »
Dmitry A. Pasechnyuk · Alexander Gasnikov · Martin Takac -
2022 Spotlight: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Spotlight: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Spotlight: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Spotlight: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Optimal Gradient Sliding and its Application to Optimal Distributed Optimization Under Similarity »
Dmitry Kovalev · Aleksandr Beznosikov · Ekaterina Borodich · Alexander Gasnikov · Gesualdo Scutari -
2022 Spotlight: The First Optimal Algorithm for Smooth and Strongly-Convex-Strongly-Concave Minimax Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Spotlight: Decentralized Local Stochastic Extra-Gradient for Variational Inequalities »
Aleksandr Beznosikov · Pavel Dvurechenskii · Anastasiia Koloskova · Valentin Samokhin · Sebastian Stich · Alexander Gasnikov -
2022 Poster: Optimal Gradient Sliding and its Application to Optimal Distributed Optimization Under Similarity »
Dmitry Kovalev · Aleksandr Beznosikov · Ekaterina Borodich · Alexander Gasnikov · Gesualdo Scutari -
2022 Poster: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Poster: Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise »
Eduard Gorbunov · Marina Danilova · David Dobre · Pavel Dvurechenskii · Alexander Gasnikov · Gauthier Gidel -
2022 Poster: The First Optimal Algorithm for Smooth and Strongly-Convex-Strongly-Concave Minimax Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Poster: A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate »
SlavomÃr Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac -
2022 Poster: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Poster: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Poster: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Poster: Decentralized Local Stochastic Extra-Gradient for Variational Inequalities »
Aleksandr Beznosikov · Pavel Dvurechenskii · Anastasiia Koloskova · Valentin Samokhin · Sebastian Stich · Alexander Gasnikov -
2021 Poster: Distributed Saddle-Point Problems Under Data Similarity »
Aleksandr Beznosikov · Gesualdo Scutari · Alexander Rogozin · Alexander Gasnikov -
2021 Poster: Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks »
Dmitry Kovalev · Elnur Gasanov · Alexander Gasnikov · Peter Richtarik -
2020 Poster: Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping »
Eduard Gorbunov · Marina Danilova · Alexander Gasnikov -
2020 Poster: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Spotlight: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Poster: Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization »
Dmitry Kovalev · Adil Salim · Peter Richtarik -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2019 Spotlight: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2018 Poster: Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters »
Pavel Dvurechenskii · Darina Dvinskikh · Alexander Gasnikov · Cesar Uribe · Angelia Nedich -
2018 Spotlight: Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters »
Pavel Dvurechenskii · Darina Dvinskikh · Alexander Gasnikov · Cesar Uribe · Angelia Nedich -
2016 Poster: Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods »
Lev Bogolubsky · Pavel Dvurechenskii · Alexander Gasnikov · Gleb Gusev · Yurii Nesterov · Andrei M Raigorodskii · Aleksey Tikhonov · Maksim Zhukovskii