Timezone: »
Most Graph Neural Networks (GNNs) predict the labels of unseen graphs by learning the correlation between the input graphs and labels. However, by presenting a graph classification investigation on the training graphs with severe bias, surprisingly, we discover that GNNs always tend to explore the spurious correlations to make decision, even if the causal correlation always exists. This implies that existing GNNs trained on such biased datasets will suffer from poor generalization capability. By analyzing this problem in a causal view, we find that disentangling and decorrelating the causal and bias latent variables from the biased graphs are both crucial for debiasing. Inspired by this, we propose a general disentangled GNN framework to learn the causal substructure and bias substructure, respectively. Particularly, we design a parameterized edge mask generator to explicitly split the input graph into causal and bias subgraphs. Then two GNN modules supervised by causal/bias-aware loss functions respectively are trained to encode causal and bias subgraphs into their corresponding representations. With the disentangled representations, we synthesize the counterfactual unbiased training samples to further decorrelate causal and bias variables. Moreover, to better benchmark the severe bias problem, we construct three new graph datasets, which have controllable bias degrees and are easier to visualize and explain. Experimental results well demonstrate that our approach achieves superior generalization performance over existing baselines. Furthermore, owing to the learned edge mask, the proposed model has appealing interpretability and transferability.
Author Information
Shaohua Fan (Beijing University of Post and Telecommunication)
Xiao Wang (Beijing University of Post and Telecommunication)
Yanhu Mo (Beijing University of Posts and Telecommunications)
Chuan Shi (Beijing University of Post and Telecommunication, Tsinghua University)
Jian Tang (Mila)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure »
Dates n/a. Room
More from the Same Authors
-
2022 Poster: Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum »
Nian Liu · Xiao Wang · Deyu Bo · Chuan Shi · Jian Pei -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : GraphCG: Unsupervised Discovery of Steerable Factors in Graphs »
Shengchao Liu · Chengpeng Wang · Weili Nie · Hanchen Wang · Jiarui Lu · Bolei Zhou · Jian Tang -
2023 Poster: Learning Invariant Representations of Graph Neural Networks via Cluster Generalization »
Xiao Wang · Donglin Xia · Nian Liu · Chuan Shi -
2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang -
2023 Poster: Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction »
Zuobai Zhang · Minghao Xu · Aurelie Lozano · Vijil Chenthamarakshan · Payel Das · Jian Tang -
2023 Poster: DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing »
Yangtian Zhang · Zuobai Zhang · Bozitao Zhong · Sanchit Misra · Jian Tang -
2023 Poster: A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs »
Zhaocheng Zhu · Xinyu Yuan · Michael Galkin · Louis-Pascal Xhonneux · Ming Zhang · Maxime Gazeau · Jian Tang -
2023 Poster: Injecting Multimodal Information into Rigid Protein Docking via Bi-level Optimization »
Ruijia Wang · YiWu Sun · Yujie Luo · Cheng Yang · Shaochuan Li · Xingyi Cheng · Hui Li · Chuan Shi · Le Song -
2023 Poster: Provable Training for Graph Contrastive Learning »
Yue Yu · Xiao Wang · Mengmei Zhang · Nian Liu · Chuan Shi -
2023 Poster: Graphs Contrastive Learning with Stable and Scalable Spectral Encoding »
Deyu Bo · Yuan Fang · Yang Liu · Chuan Shi -
2023 Poster: Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials »
Shengchao Liu · weitao Du · Yanjing Li · Zhuoxinran Li · Zhiling Zheng · Chenru Duan · Zhi-Ming Ma · Omar Yaghi · Animashree Anandkumar · Christian Borgs · Jennifer Chayes · Hongyu Guo · Jian Tang -
2023 Poster: Evaluating Self-Supervised Learning for Molecular Graph Embeddings »
Hanchen Wang · Jean Kaddour · Shengchao Liu · Jian Tang · Joan Lasenby · Qi Liu -
2022 Workshop: Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media »
Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh -
2022 Spotlight: Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum »
Nian Liu · Xiao Wang · Deyu Bo · Chuan Shi · Jian Pei -
2022 Spotlight: Lightning Talks 6A-1 »
Ziyi Wang · Nian Liu · Yaming Yang · Qilong Wang · Yuanxin Liu · Zongxin Yang · Yizhao Gao · Yanchen Deng · Dongze Lian · Nanyi Fei · Ziyu Guan · Xiao Wang · Shufeng Kong · Xumin Yu · Daquan Zhou · Yi Yang · Fandong Meng · Mingze Gao · Caihua Liu · Yongming Rao · Zheng Lin · Haoyu Lu · Zhe Wang · Jiashi Feng · Zhaolin Zhang · Deyu Bo · Xinchao Wang · Chuan Shi · Jiangnan Li · Jiangtao Xie · Jie Zhou · Zhiwu Lu · Wei Zhao · Bo An · Jiwen Lu · Peihua Li · Jian Pei · Hao Jiang · Cai Xu · Peng Fu · Qinghua Hu · Yijie Li · Weigang Lu · Yanan Cao · Jianbin Huang · Weiping Wang · Zhao Cao · Jie Zhou -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: Inductive Logical Query Answering in Knowledge Graphs »
Michael Galkin · Zhaocheng Zhu · Hongyu Ren · Jian Tang -
2022 Poster: High-Order Pooling for Graph Neural Networks with Tensor Decomposition »
Chenqing Hua · Guillaume Rabusseau · Jian Tang -
2022 Poster: PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding »
Minghao Xu · Zuobai Zhang · Jiarui Lu · Zhaocheng Zhu · Yangtian Zhang · Ma Chang · Runcheng Liu · Jian Tang -
2022 Poster: Uncovering the Structural Fairness in Graph Contrastive Learning »
Ruijia Wang · Xiao Wang · Chuan Shi · Le Song -
2021 Poster: Universal Graph Convolutional Networks »
Di Jin · Zhizhi Yu · Cuiying Huo · Rui Wang · Xiao Wang · Dongxiao He · Jiawei Han -
2021 Poster: Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration »
Xiao Wang · Hongrui Liu · Chuan Shi · Cheng Yang