Timezone: »
In this paper, we study dataset distillation (DD), from a novel perspective and introduce a \emph{dataset factorization} approach, termed \emph{HaBa}, which is a plug-and-play strategy portable to any existing DD baseline. Unlike conventional DD approaches that aim to produce distilled and representative samples, \emph{HaBa} explores decomposing a dataset into two components: data \emph{Ha}llucination networks and \emph{Ba}ses, where the latter is fed into the former to reconstruct image samples. The flexible combinations between bases and hallucination networks, therefore, equip the distilled data with exponential informativeness gain, which largely increase the representation capability of distilled datasets. To furthermore increase the data efficiency of compression results, we further introduce a pair of adversarial contrastive \xw{constraints} on the resultant hallucination networks and bases, which increase the diversity of generated images and inject more discriminant information into the factorization. Extensive comparisons and experiments demonstrate that our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65\%. Moreover, distilled datasets by our approach also achieve \textasciitilde10\% higher accuracy than baseline methods in cross-architecture generalization. Our code is available \href{https://github.com/Huage001/DatasetFactorization}{here}.
Author Information
Songhua Liu (national university of singaore, National University of Singapore)
Kai Wang (National University of Singapore)

Kai Wang is a second-year Ph.D. student at the National University of Singapore. He was awarded the AI Singapore Ph.D. fellowship in August 2021. His research area is Dataset Efficient AI and its applications, such as dataset condensation, dataset expandation, dataset denoising, and dataset privacy. He has published 11 papers in top-tier conferences or journals and obtained 10+ worldwide challenge top3 awards. He hopes to build a series of high-efficiency algorithms for more intelligent datasets.
Xingyi Yang (National University of Singapore)
Xingyi Yang is a second-year Ph.D student at National University of Singapore(NUS) at Learning and Vision Lab. I am now working under the supervision of Prof.Xinchao Wang.
Jingwen Ye (National University of Singapore)
Xinchao Wang
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Dataset Distillation via Factorization »
Thu. Dec 1st through Fri the 2nd Room Hall J #923
More from the Same Authors
-
2022 Poster: Inception Transformer »
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan -
2023 Poster: Towards Personalized Federated Learning via Heterogeneous Model Reassembly »
Jiaqi Wang · Xingyi Yang · Suhan Cui · Liwei Che · Lingjuan Lyu · Dongkuan (DK) Xu · Fenglong Ma -
2023 Poster: pFedBreD: Personalized Prior for Reactivating the Overlooked Information in Federated Learning. »
Mingjia Shi · Yuhao Zhou · Qing Ye · Kai Wang · Huaizheng Zhang · Shudong Huang · Jiancheng Lv -
2023 Poster: Generator Born from Classifier »
Runpeng Yu · Xinchao Wang -
2023 Poster: Frequency-Enhanced Data Augmentation for Vision-and-Language Navigation »
Keji He · Chenyang Si · Zhihe Lu · Yan Huang · Liang Wang · Xinchao Wang -
2023 Poster: Structural Pruning for Diffusion Models »
Gongfan Fang · Xinyin Ma · Xinchao Wang -
2023 Poster: Mixed Samples as Probes for Unsupervised Model Selection in Domain Adaptation »
Dapeng Hu · Jian Liang · Jun Hao Liew · Chuhui Xue · Song Bai · Xinchao Wang -
2023 Poster: GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph »
Xin Li · Dongze Lian · Zhihe Lu · Jiawang Bai · Zhibo Chen · Xinchao Wang -
2023 Poster: Does Graph Distillation See Like Vision Dataset Counterpart? »
Beining Yang · Kai Wang · Qingyun Sun · Cheng Ji · Xingcheng Fu · Hao Tang · Yang You · Jianxin Li -
2023 Poster: LLM-Pruner: On the Structural Pruning of Large Language Models »
Xinyin Ma · Gongfan Fang · Xinchao Wang -
2023 Poster: Backprop-Free Dataset Distillation »
Songhua Liu · Xinchao Wang -
2023 Poster: Expanding Small-Scale Datasets with Guided Imagination »
Yifan Zhang · Daquan Zhou · Bryan Hooi · Kai Wang · Jiashi Feng -
2022 Spotlight: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Spotlight: Lightning Talks 6A-1 »
Ziyi Wang · Nian Liu · Yaming Yang · Qilong Wang · Yuanxin Liu · Zongxin Yang · Yizhao Gao · Yanchen Deng · Dongze Lian · Nanyi Fei · Ziyu Guan · Xiao Wang · Shufeng Kong · Xumin Yu · Daquan Zhou · Yi Yang · Fandong Meng · Mingze Gao · Caihua Liu · Yongming Rao · Zheng Lin · Haoyu Lu · Zhe Wang · Jiashi Feng · Zhaolin Zhang · Deyu Bo · Xinchao Wang · Chuan Shi · Jiangnan Li · Jiangtao Xie · Jie Zhou · Zhiwu Lu · Wei Zhao · Bo An · Jiwen Lu · Peihua Li · Jian Pei · Hao Jiang · Cai Xu · Peng Fu · Qinghua Hu · Yijie Li · Weigang Lu · Yanan Cao · Jianbin Huang · Weiping Wang · Zhao Cao · Jie Zhou -
2022 Spotlight: Inception Transformer »
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Training Spiking Neural Networks with Local Tandem Learning »
Qu Yang · Jibin Wu · Malu Zhang · Yansong Chua · Xinchao Wang · Haizhou Li -
2022 Poster: Deep Model Reassembly »
Xingyi Yang · Daquan Zhou · Songhua Liu · Jingwen Ye · Xinchao Wang -
2022 Poster: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang