Timezone: »
Gradient estimation---approximating the gradient of an expectation with respect to the parameters of a distribution---is central to the solution of many machine learning problems. However, when the distribution is discrete, most common gradient estimators suffer from excessive variance. To improve the quality of gradient estimation, we introduce a variance reduction technique based on Stein operators for discrete distributions. We then use this technique to build flexible control variates for the REINFORCE leave-one-out estimator. Our control variates can be adapted online to minimize variance and do not require extra evaluations of the target function. In benchmark generative modeling tasks such as training binary variational autoencoders, our gradient estimator achieves substantially lower variance than state-of-the-art estimators with the same number of function evaluations.
Author Information
Jiaxin Shi (Stanford University)
Yuhao Zhou (Tsinghua University)
Jessica Hwang (Stanford University)
Michalis Titsias (DeepMind)
Lester Mackey (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Tue. Nov 29th 05:00 -- 07:00 PM Room Hall J #503
More from the Same Authors
-
2021 : Bounding Wasserstein distance with couplings »
Niloy Biswas · Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2022 Poster: DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps »
Cheng Lu · Yuhao Zhou · Fan Bao · Jianfei Chen · Chongxuan LI · Jun Zhu -
2022 : A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 : Targeted Separation and Convergence with Kernel Discrepancies »
Alessandro Barp · Carl-Johann Simon-Gabriel · Mark Girolami · Lester Mackey -
2022 : On Equivalences between Weight and Function-Space Langevin Dynamics »
Ziyu Wang · Yuhao Zhou · Ruqi Zhang · Jun Zhu -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 Spotlight: DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps »
Cheng Lu · Yuhao Zhou · Fan Bao · Jianfei Chen · Chongxuan LI · Jun Zhu -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: Fast Instrument Learning with Faster Rates »
Ziyu Wang · Yuhao Zhou · Jun Zhu -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 : Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates »
Ke Alexander Wang · Matthew Levine · Jiaxin Shi · Emily Fox -
2022 : Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates »
Ke Alexander Wang · Matthew Levine · Jiaxin Shi · Emily Fox -
2022 Poster: Fast Instrument Learning with Faster Rates »
Ziyu Wang · Yuhao Zhou · Jun Zhu -
2021 : Invited Talk 5 Q&A »
Lester Mackey -
2021 : Your Model is Wrong (but Might Still Be Useful) »
Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2021 Poster: Entropy-based adaptive Hamiltonian Monte Carlo »
Marcel Hirt · Michalis Titsias · Petros Dellaportas -
2021 Poster: Scalable Quasi-Bayesian Inference for Instrumental Variable Regression »
Ziyu Wang · Yuhao Zhou · Tongzheng Ren · Jun Zhu -
2020 Poster: Stochastic Stein Discrepancies »
Jackson Gorham · Anant Raj · Lester Mackey -
2020 Poster: Minimax Estimation of Conditional Moment Models »
Nishanth Dikkala · Greg Lewis · Lester Mackey · Vasilis Syrgkanis -
2020 Poster: Cross-validation Confidence Intervals for Test Error »
Pierre Bayle · Alexandre Bayle · Lucas Janson · Lester Mackey -
2019 : Lester Mackey (Microsoft Research and Stanford) »
Lester Mackey -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 Poster: Minimum Stein Discrepancy Estimators »
Alessandro Barp · Francois-Xavier Briol · Andrew Duncan · Mark Girolami · Lester Mackey -
2019 Poster: Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions »
Ashia Wilson · Lester Mackey · Andre Wibisono -
2019 Poster: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Spotlight: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2018 Poster: Random Feature Stein Discrepancies »
Jonathan Huggins · Lester Mackey -
2018 Poster: Global Non-convex Optimization with Discretized Diffusions »
Murat Erdogdu · Lester Mackey · Ohad Shamir -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2016 Poster: One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities »
Michalis Titsias -
2016 Poster: The Generalized Reparameterization Gradient »
Francisco Ruiz · Michalis Titsias · David Blei -
2015 Poster: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2015 Spotlight: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2015 Poster: Local Expectation Gradients for Black Box Variational Inference »
Michalis Titsias · Miguel Lázaro-Gredilla -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2014 Spotlight: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2013 Poster: Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression »
Michalis Titsias · Miguel Lazaro-Gredilla