Timezone: »
Given the importance of getting calibrated predictions and reliable uncertainty estimations, various post-hoc calibration methods have been developed for neural networks on standard multi-class classification tasks. However, these methods are not well suited for calibrating graph neural networks (GNNs), which presents unique challenges such as accounting for the graph structure and the graph-induced correlations between the nodes. In this work, we conduct a systematic study on the calibration qualities of GNN node predictions. In particular, we identify five factors which influence the calibration of GNNs: general under-confident tendency, diversity of nodewise predictive distributions, distance to training nodes, relative confidence level, and neighborhood similarity. Furthermore, based on the insights from this study, we design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks. GATS incorporates designs that address all the identified influential factors and produces nodewise temperature scaling using an attention-based architecture. GATS is accuracy-preserving, data-efficient, and expressive at the same time. Our experiments empirically verify the effectiveness of GATS, demonstrating that it can consistently achieve state-of-the-art calibration results on various graph datasets for different GNN backbones.
Author Information
Hans Hao-Hsun Hsu (Technische Universität München)
Yuesong Shen (Technical University of Munich)
Christian Tomani (Technical University Munich)
Daniel Cremers (Technical University of Munich)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: What Makes Graph Neural Networks Miscalibrated? »
Dates n/a. Room
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2022 Poster: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 : A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs »
Hans Hao-Hsun Hsu · Yuesong Shen · Daniel Cremers -
2022 Spotlight: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2021 Poster: Sparse Quadratic Optimisation over the Stiefel Manifold with Application to Permutation Synchronisation »
Florian Bernard · Daniel Cremers · Johan Thunberg -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-Taixé · Daniel Cremers -
2016 Poster: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers -
2016 Oral: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers