Timezone: »
A large amount of recent research has the far-reaching goal of finding training methods for deep neural networks that can serve as alternatives to backpropagation~(BP). A prominent example is predictive coding (PC), which is a neuroscience-inspired method that performs inference on hierarchical Gaussian generative models. These methods, however, fail to keep up with modern neural networks, as they are unable to replicate the dynamics of complex layers and activation functions. In this work, we solve this problem by generalizing PC to arbitrary probability distributions, enabling the training of architectures, such as transformers, that are hard to approximate with only Gaussian assumptions. We perform three experimental analyses. First, we study the gap between our method and the standard formulation of PC on multiple toy examples. Second, we test the reconstruction quality on variational autoencoders, where our method reaches the same reconstruction quality as BP. Third, we show that our method allows us to train transformer networks and achieve performance comparable with BP on conditional language models. More broadly, this method allows neuroscience-inspired learning to be applied to multiple domains, since the internal distributions can be flexibly adapted to the data, tasks, and architectures used.
Author Information
Luca Pinchetti (University of Oxford)
Tommaso Salvatori (University of Oxford)
Yordan Yordanov (University of Oxford)
Beren Millidge (University of Edinburgh)
Yuhang Song (University of Oxford)
Thomas Lukasiewicz (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Predictive Coding beyond Gaussian Distributions »
Wed. Nov 30th through Dec 1st Room Hall J #115
More from the Same Authors
-
2021 : Few-Shot Out-of-Domain Transfer of Natural Language Explanations »
Yordan Yordanov · Vid Kocijan · Thomas Lukasiewicz · Oana M Camburu -
2021 : Few-Shot Out-of-Domain Transfer of Natural Language Explanations »
Yordan Yordanov · Vid Kocijan · Thomas Lukasiewicz · Oana M Camburu -
2022 : Associative memory via covariance-learning predictive coding networks »
Mufeng Tang · Tommaso Salvatori · Yuhang Song · Beren Millidge · Thomas Lukasiewicz · Rafal Bogacz -
2022 : Generalized Predictive Coding: Bayesian Inference in Static and Dynamic models »
AndrĂ© Ofner · Beren Millidge · Sebastian Stober -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: Learning on Arbitrary Graph Topologies via Predictive Coding »
Tommaso Salvatori · Luca Pinchetti · Beren Millidge · Yuhang Song · Tianyi Bao · Rafal Bogacz · Thomas Lukasiewicz -
2021 Poster: Associative Memories via Predictive Coding »
Tommaso Salvatori · Yuhang Song · Yujian Hong · Lei Sha · Simon Frieder · Zhenghua Xu · Rafal Bogacz · Thomas Lukasiewicz -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz -
2020 Poster: Coherent Hierarchical Multi-Label Classification Networks »
Eleonora Giunchiglia · Thomas Lukasiewicz -
2020 Poster: BoxE: A Box Embedding Model for Knowledge Base Completion »
Ralph Abboud · Ismail Ceylan · Thomas Lukasiewicz · Tommaso Salvatori -
2020 Spotlight: BoxE: A Box Embedding Model for Knowledge Base Completion »
Ralph Abboud · Ismail Ceylan · Thomas Lukasiewicz · Tommaso Salvatori -
2020 Poster: Can the Brain Do Backpropagation? --- Exact Implementation of Backpropagation in Predictive Coding Networks »
Yuhang Song · Thomas Lukasiewicz · Zhenghua Xu · Rafal Bogacz -
2019 Poster: Controllable Text-to-Image Generation »
Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom