Timezone: »

tntorch: Tensor Network Learning with PyTorch
Mikhail Usvyatsov · Rafael Ballester-Ripoll · Konrad Schindler

Tue Dec 06 09:00 AM -- 11:00 AM (PST) @

We present tntorch, a tensor learning framework that supports multiple decompositions (including Candecomp/Parafac, Tucker, and Tensor Train) under a unified interface. With our library, the user can learn and handle low-rank tensors with automatic differentiation, seamless GPU support, and the convenience of PyTorch's API. Besides decomposition algorithms, tntorch implements differentiable tensor algebra, rank truncation, cross-approximation, batch processing, comprehensive tensor arithmetics, and more.

Author Information

Mikhail Usvyatsov (ETH Zürich)
Rafael Ballester-Ripoll
Konrad Schindler (ETH Zürich)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 Spotlight: Lightning Talks 1A-1 »
    Siba Smarak Panigrahi · Xuhong Li · Mikhail Usvyatsov · Shaohan Chen · Sohan Patnaik · Haoyi Xiong · Nikolaos V Sahinidis · Rafael Ballester-Ripoll · Chuanhou Gao · Xingjian Li · Konrad Schindler · Xuanyu Wu · Zeyu Chen · Dejing Dou
  • 2022 Poster: FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation »
    Mehmet Ozgur Turkoglu · Alexander Becker · Hüseyin Anil Gündüz · Mina Rezaei · Bernd Bischl · Rodrigo Caye Daudt · Stefano D'Aronco · Jan Wegner · Konrad Schindler