Timezone: »
Spike-and-Slab Probabilistic Backpropagation: When Smarter Approximations Make No Difference
Evan Ott · Sinead Williamson
Event URL: https://openreview.net/forum?id=iYAdBHSA_Pt »
Probabilistic backpropagation is an approximate Bayesian inference method for deep neural networks, using a message-passing framework. These messages---which correspond to distributions arising as we propagate our input through a probabilistic neural network---are approximated as Gaussian. However, in practice, the exact distributions may be highly non-Gaussian. In this paper, we propose a more realistic approximation based on a spike-and-slab distribution. Unfortunately, in this case, better approximation of the messages does not translate to better downstream performance. We present results comparing the two schemes and discuss why we do not see a benefit from this spike-and-slab approach.
Author Information
Evan Ott (University of Texas at Austin)
Sinead Williamson (University of Texas at Austin)
More from the Same Authors
-
2022 : Sequential Gaussian Processes for Online Learning of Nonstationary Functions »
Michael Minyi Zhang · Bianca Dumitrascu · Sinead Williamson · Barbara Engelhardt -
2022 : Detecting Synthetic Opioids with NQR Spectroscopy and Complex-Valued Signal Denoising »
Amber Day · Natalie Klein · Michael Malone · Harris Mason · Sinead Williamson -
2022 : Detecting State Changes in Dynamic Neuronal Networks »
Yiwei Gong · Sinead Williamson -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2014 Poster: Dependent nonparametric trees for dynamic hierarchical clustering »
Kumar Avinava Dubey · Qirong Ho · Sinead Williamson · Eric Xing