Timezone: »
Probabilistic user modeling is essential for building collaborative AI systems within probabilistic frameworks. However, modern advanced user models, often designed as cognitive behavior simulators, are computationally prohibitive for interactive use in cooperative AI assistants. In this extended abstract, we address this problem by introducing widely-applicable differentiable surrogates for bypassing this computational bottleneck; the surrogates enable using modern behavioral models with online computational cost which is independent of their original computational cost. We show experimentally that modeling capabilities comparable to likelihood-free inference methods are achievable, with over eight orders of magnitude reduction in computational time. Finally, we demonstrate how AI-assistants can computationally feasibly use cognitive models in a previously studied menu-search task.
Author Information
Alex Hämäläinen (Aalto University)
Mustafa Mert Çelikok (Aalto University)
Samuel Kaski (Aalto University and University of Manchester)
More from the Same Authors
-
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Targeted Causal Elicitation »
Nazaal Ibrahim · ST John · Zhigao Guo · Samuel Kaski -
2022 : More trustworthy Bayesian optimization of materials properties by adding human into the loop »
Armi Tiihonen · Louis Filstroff · Petrus Mikkola · Emma Lehto · Samuel Kaski · Milica Todorović · Patrick Rinke -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2023 Poster: Practical Equivariances via Relational Conditional Neural Processes »
Daolang Huang · Manuel Haussmann · Ulpu Remes · ST John · Grégoire Clarté · Kevin Sebastian Luck · Samuel Kaski · Luigi Acerbi -
2023 Poster: Compositional Sculpting of Iterative Generative Processes »
Timur Garipov · Sebastiaan De Peuter · Ge Yang · Vikas Garg · Samuel Kaski · Tommi Jaakkola -
2023 Poster: Learning Robust Statistics for Simulation-based Inference under Model Misspecification »
Daolang Huang · Ayush Bharti · Amauri Souza · Luigi Acerbi · Samuel Kaski -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Collaborative AI for assisting virtual laboratories »
Samuel Kaski -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2022 : HAPNEST: An efficient tool for generating large-scale genetics datasets from limited training data »
Sophie Wharrie · Zhiyu Yang · Vishnu Raj · Remo Monti · Rahul Gupta · Ying Wang · Alicia Martin · Luke O'Connor · Samuel Kaski · Pekka Marttinen · Pier Palamara · Christoph Lippert · Andrea Ganna -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Deconfounded Representation Similarity for Comparison of Neural Networks »
Tianyu Cui · Yogesh Kumar · Pekka Marttinen · Samuel Kaski -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 Poster: Distributed Influence-Augmented Local Simulators for Parallel MARL in Large Networked Systems »
Miguel Suau · Jinke He · Mustafa Mert Çelikok · Matthijs Spaan · Frans Oliehoek -
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2017 Poster: Non-Stationary Spectral Kernels »
Sami Remes · Markus Heinonen · Samuel Kaski -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski