Timezone: »
When agents fail in the world, it is important to understand why. Failures are due to underlying distribution shifts in the goals desired by the end user or to the environment layouts that impact the policy's actions. In the case of multi-task policies conditioned on goals, this problem manifests in difficulty in disambiguating between goal and policy failures: is the agent failing because it can't correctly infer what the desired goal is or because it doesn't know how to take actions toward achieving the goal? We hypothesize that successfully disentangling these two failures modes holds important implications for selecting a finetuning strategy. In this paper, we explore the feasibility of leveraging human feedback to diagnose what vs. how failures for efficient adaptation. We develop an end-to-end policy training framework that uses attention to produce a human-interpretable representation, a visual masked state, to communicate the agent's intermediate task representation. In experiments with human users in both discrete and continuous control domains, we show that our visual attention mask policy can aid participants in successfully inferring the agent's failure mode significantly better than actions alone. Leveraging this feedback, we show subsequent performance gains during finetuning and discuss implications of using humans to diagnose parameter-level failures.
Author Information
Andi Peng (MIT)
Mark Ho (New York University)
Aviv Netanyahu (MIT)
Julie A Shah (MIT)
Pulkit Agrawal (MIT)
More from the Same Authors
-
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2022 : Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Julie A Shah · Roger Levy · Noga Zaslavsky -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : How to talk so AI will learn: instructions, descriptions, and pragmatics »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2022 : Learning to Extrapolate: A Transductive Approach »
Aviv Netanyahu · Abhishek Gupta · Max Simchowitz · Kaiqing Zhang · Pulkit Agrawal -
2022 : On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning »
Dilip Arumugam · Mark Ho · Noah Goodman · Benjamin Van Roy -
2022 : Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations »
Felix Yanwei Wang · Nadia Figueroa · Shen Li · Ankit Shah · Julie A Shah -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2023 Workshop: The NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning »
Benjamin Eysenbach · Ishan Durugkar · Jason Yecheng Ma · Andi Peng · Tongzhou Wang · Amy Zhang -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2022 : Visual Pre-training for Navigation: What Can We Learn from Noise? »
Felix Yanwei Wang · Ching-Yun Ko · Pulkit Agrawal -
2022 Poster: Redeeming intrinsic rewards via constrained optimization »
Eric Chen · Zhang-Wei Hong · Joni Pajarinen · Pulkit Agrawal -
2022 Poster: Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Abhishek Gupta · Dibya Ghosh · Sergey Levine · Pulkit Agrawal -
2022 Poster: How to talk so AI will learn: Instructions, descriptions, and autonomy »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2021 : [O5] Do Feature Attribution Methods Correctly Attribute Features? »
Yilun Zhou · Serena Booth · Marco Tulio Ribeiro · Julie A Shah -
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2021 Workshop: 2nd Workshop on Self-Supervised Learning: Theory and Practice »
Pengtao Xie · Ishan Misra · Pulkit Agrawal · Abdelrahman Mohamed · Shentong Mo · Youwei Liang · Jeannette Bohg · Kristina N Toutanova -
2021 Poster: Emergent Discrete Communication in Semantic Spaces »
Mycal Tucker · Huao Li · Siddharth Agrawal · Dana Hughes · Katia Sycara · Michael Lewis · Julie A Shah -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 Session: Orals & Spotlights Track 09: Reinforcement Learning »
Pulkit Agrawal · Mohammad Ghavamzadeh -
2019 Poster: Superposition of many models into one »
Brian Cheung · Alexander Terekhov · Yubei Chen · Pulkit Agrawal · Bruno Olshausen -
2018 Poster: Bayesian Inference of Temporal Task Specifications from Demonstrations »
Ankit Shah · Pritish Kamath · Julie A Shah · Shen Li -
2016 : What makes ImageNet good for Transfer Learning? »
Jacob MY Huh · Pulkit Agrawal · Alexei Efros -
2016 : Jitendra Malik and Pulkit Agrawal »
Jitendra Malik · Pulkit Agrawal -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2016 Poster: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2016 Oral: Learning to Poke by Poking: Experiential Learning of Intuitive Physics »
Pulkit Agrawal · Ashvin Nair · Pieter Abbeel · Jitendra Malik · Sergey Levine -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2014 Poster: Fairness in Multi-Agent Sequential Decision-Making »
Chongjie Zhang · Julie A Shah -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah