Timezone: »

 
Prioritizing Samples in Reinforcement Learning with Reducible Loss
Shivakanth Sujit · Somjit Nath · Pedro Braga · Samira Ebrahimi Kahou
Event URL: https://openreview.net/forum?id=C2Mpi0S3MoS »

Most reinforcement learning algorithms take advantage of an experience replay buffer to repeatedly train on samples the agent has observed in the past. This prevents catastrophic forgetting, however simply assigning equal importance to each of the samples is a naive strategy. In this paper, we propose a method to prioritize samples based on how much we can learn from a sample. We define the learn-ability of a sample as the steady decrease of the training loss associated with this sample over time. We develop an algorithm to prioritize samples with high learn-ability, while assigning lower priority to those that are hard-to-learn, typically caused by noise or stochasticity. We empirically show that our method is more robust than random sampling and also better than just prioritizing with respect to the training loss, i.e. the temporal difference loss, which is used in vanilla prioritized experience replay.

Author Information

Shivakanth Sujit (École de technologie supérieure)
Somjit Nath (Mila/École de technologie supérieure)
Pedro Braga (UFPE, ÉTS/Mila)
Samira Ebrahimi Kahou (McGill University)

More from the Same Authors

  • 2021 : Shift and Scale is Detrimental To Few-Shot Transfer »
    Moslem Yazdanpanah · Christian Desrosiers · Mohammad Havaei · Eugene Belilovsky · Samira Ebrahimi Kahou
  • 2021 : Learning Robust Dynamics through Variational Sparse Gating »
    Arnav Kumar Jain · Shivakanth Sujit · Shruti Joshi · Vincent Michalski · Danijar Hafner · Samira Ebrahimi Kahou
  • 2022 : BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning »
    Mohsen Fayyaz · Ehsan Aghazadeh · Seyed MohammadAli Modarressi · Mohammad Taher Pilehvar · Yadollah Yaghoobzadeh · Samira Ebrahimi Kahou
  • 2022 : Bridging the Gap Between Offline and Online Reinforcement Learning Evaluation Methodologies »
    Shivakanth Sujit · Pedro Braga · Jörg Bornschein · Samira Ebrahimi Kahou
  • 2022 : Learning from uncertain concepts via test time interventions »
    Ivaxi Sheth · Aamer Abdul Rahman · Laya Rafiee Sevyeri · Mohammad Havaei · Samira Ebrahimi Kahou
  • 2022 : Locally Constrained Representations in Reinforcement Learning »
    Somjit Nath · Samira Ebrahimi Kahou
  • 2022 : Pitfalls of conditional computation for multi-modal learning »
    Ivaxi Sheth · Mohammad Havaei · Samira Ebrahimi Kahou
  • 2022 Poster: Learning Robust Dynamics through Variational Sparse Gating »
    Arnav Kumar Jain · Shivakanth Sujit · Shruti Joshi · Vincent Michalski · Danijar Hafner · Samira Ebrahimi Kahou
  • 2021 : From model compression to self-distillation: a review »
    Samira Ebrahimi Kahou
  • 2020 : Spotlight Talk: Ebrahimi Kahou »
    Samira Ebrahimi Kahou
  • 2019 : Lunch Break and Posters »
    Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu
  • 2018 : Lunch & Posters »
    Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang
  • 2018 Poster: Towards Deep Conversational Recommendations »
    Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal