Timezone: »
Deep reinforcement learning agents are notoriously sample inefficient, which considerably limits their application to real-world problems. Recently, many model-based methods have been designed to address this issue, with learning in the imagination of a world model being one of the most prominent approaches. However, while virtually unlimited interaction with a simulated environment sounds appealing, the world model has to be accurate over extended periods of time. Motivated by the success of Transformers in sequence modeling tasks, we introduce IRIS, a data-efficient agent that learns in a world model composed of a discrete autoencoder and an autoregressive Transformer. With the equivalent of only two hours of gameplay in the Atari 100k benchmark, IRIS achieves a mean human normalized score of 1.046, and outperforms humans on 10 out of 26 games, setting a new state of the art for methods without lookahead search. To foster future research on Transformers and world models for sample-efficient reinforcement learning, we release our codebase at this https URL. For the review process, we provide the code and visualizations in the supplementary materials.
Author Information
Vincent Micheli (University of Geneva, Switzerland)
Eloi Alonso (University of Geneva)
François Fleuret (University of Geneva)
François Fleuret got a PhD in Mathematics from INRIA and the University of Paris VI in 2000, and an Habilitation degree in Mathematics from the University of Paris XIII in 2006. He is Full Professor in the department of Computer Science at the University of Geneva, and Adjunct Professor in the School of Engineering of the École Polytechnique Fédérale de Lausanne. He has published more than 80 papers in peer-reviewed international conferences and journals. He is Associate Editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence, serves as Area Chair for NeurIPS, AAAI, and ICCV, and in the program committee of many top-tier international conferences in machine learning and computer vision. He was or is expert for multiple funding agencies. He is the inventor of several patents in the field of machine learning, and co-founder of Neural Concept SA, a company specializing in the development and commercialization of deep learning solutions for engineering design. His main research interest is machine learning, with a particular focus on computational aspects and sample efficiency.
More from the Same Authors
-
2020 : Exact Preimages of Neural Network Aircraft Collision Avoidance Systems »
Kyle Matoba · François Fleuret -
2021 : Test time Adaptation through Perturbation Robustness »
Prabhu Teja Sivaprasad · François Fleuret -
2022 : Deformations of Boltzmann Distributions »
Bálint Máté · François Fleuret -
2022 : Diversity through Disagreement for Better Transferability »
Matteo Pagliardini · Martin Jaggi · François Fleuret · Sai Praneeth Karimireddy -
2023 Poster: Faster Causal Attention Over Large Sequences Through Sparse Flash Attention »
Matteo Pagliardini · Daniele Paliotta · Martin Jaggi · François Fleuret -
2023 Poster: SUPA: A Lightweight Diagnostic Simulator for Machine Learning in Particle Physics »
Atul Kumar Sinha · Daniele Paliotta · Bálint Máté · John Raine · Tobias Golling · François Fleuret -
2022 Poster: Flowification: Everything is a normalizing flow »
Bálint Máté · Samuel Klein · Tobias Golling · François Fleuret -
2022 Poster: Efficient Training of Low-Curvature Neural Networks »
Suraj Srinivas · Kyle Matoba · Himabindu Lakkaraju · François Fleuret -
2020 Poster: Fast Transformers with Clustered Attention »
Apoorv Vyas · Angelos Katharopoulos · François Fleuret -
2019 Poster: Reducing Noise in GAN Training with Variance Reduced Extragradient »
Tatjana Chavdarova · Gauthier Gidel · François Fleuret · Simon Lacoste-Julien -
2019 Demonstration: Real Time CFD simulations with 3D Mesh Convolutional Networks »
Pierre Baque · Pascal Fua · François Fleuret -
2019 Poster: Full-Gradient Representation for Neural Network Visualization »
Suraj Srinivas · François Fleuret -
2018 Poster: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching »
Stepan Tulyakov · Anton Ivanov · François Fleuret -
2017 Poster: K-Medoids For K-Means Seeding »
James Newling · François Fleuret -
2017 Spotlight: K-Medoids For K-Means Seeding »
James Newling · François Fleuret -
2016 Poster: Nested Mini-Batch K-Means »
James Newling · François Fleuret -
2015 Poster: Kullback-Leibler Proximal Variational Inference »
Mohammad Emtiyaz Khan · Pierre Baque · François Fleuret · Pascal Fua -
2014 Demonstration: A 3D Simulator for Evaluating Reinforcement and Imitation Learning Algorithms on Complex Tasks »
Leonidas Lefakis · François Fleuret · Cijo Jose -
2013 Poster: Reservoir Boosting : Between Online and Offline Ensemble Learning »
Leonidas Lefakis · François Fleuret -
2011 Poster: Boosting with Maximum Adaptive Sampling »
Charles Dubout · François Fleuret -
2010 Demonstration: Platform to Share Feature Extraction Methods »
François Fleuret -
2010 Poster: Joint Cascade Optimization Using A Product Of Boosted Classifiers »
Leonidas Lefakis · François Fleuret