Timezone: »
Policy-gradient methods are widely used for learning control policies. They can be easily distributed to multiple workers and reach state-of-the-art results in many domains. Unfortunately, they exhibit large variance and subsequently suffer from high-sample complexity since they aggregate gradients over entire trajectories. At the other extreme, planning methods, like tree search, optimize the policy using single-step transitions that consider future lookahead. These approaches have been mainly considered for value-based algorithms. Planning-based algorithms require a forward model and are computationally intensive at each step, but are more sample efficient. In this work, we introduce SoftTreeMax, the first approach that integrates tree-search into policy gradient. Traditionally, gradients are computed for single state-action pairs. Instead, our tree-based policy structure leverages all gradients at the tree leaves in each environment step. This allows us to reduce the variance of gradients by three orders of magnitude and to benefit from better sample complexity compared with standard policy gradient. On Atari, SoftTreeMax demonstrates up to 5x better performance in faster run-time compared with distributed PPO.
Author Information
Gal Dalal (NVIDIA)
Assaf Hallak (The Technion)
Shie Mannor (Technion)
Gal Chechik (NVIDIA, Bar-Ilan University)
More from the Same Authors
-
2021 Spotlight: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Latent Geodesics of Model Dynamics for Offline Reinforcement Learning »
Guy Tennenholtz · Nir Baram · Shie Mannor -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Locality Matters: A Scalable Value Decomposition Approach for Cooperative Multi-Agent Reinforcement Learning »
Roy Zohar · Shie Mannor · Guy Tennenholtz -
2022 : DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles »
Peter Karkus · Boris Ivanovic · Shie Mannor · Marco Pavone -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 Poster: Tractable Optimality in Episodic Latent MABs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Reinforcement Learning with a Terminator »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Shie Mannor · Uri Shalit · Gal Chechik · Assaf Hallak · Gal Dalal -
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2022 Poster: Uncertainty Estimation Using Riemannian Model Dynamics for Offline Reinforcement Learning »
Guy Tennenholtz · Shie Mannor -
2022 Poster: Efficient Risk-Averse Reinforcement Learning »
Ido Greenberg · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2021 : Safe RL Panel Discussion »
Animesh Garg · Marek Petrik · Shie Mannor · Claire Tomlin · Ugo Rosolia · Dylan Hadfield-Menell -
2021 : Shie Mannor »
Shie Mannor -
2021 : Shie Mannor »
Shie Mannor -
2021 Poster: Twice regularized MDPs and the equivalence between robustness and regularization »
Esther Derman · Matthieu Geist · Shie Mannor -
2021 Poster: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 Poster: Personalized Federated Learning With Gaussian Processes »
Idan Achituve · Aviv Shamsian · Aviv Navon · Gal Chechik · Ethan Fetaya -
2021 Poster: Sim and Real: Better Together »
Shirli Di-Castro · Dotan Di Castro · Shie Mannor -
2021 Poster: Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction »
Gal Dalal · Assaf Hallak · Steven Dalton · iuri frosio · Shie Mannor · Gal Chechik -
2021 Poster: Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2020 Poster: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Spotlight: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Adaptive Trust Region Policy Optimization: Convergence and Faster Rates of regularized MDPs »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2019 Spotlight: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2018 Poster: Multiple-Step Greedy Policies in Approximate and Online Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Spotlight: Multiple-Step Greedy Policies in Approximate and Online Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Poster: Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction »
Roei Herzig · Moshiko Raboh · Gal Chechik · Jonathan Berant · Amir Globerson -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2017 Poster: Shallow Updates for Deep Reinforcement Learning »
Nir Levine · Tom Zahavy · Daniel J Mankowitz · Aviv Tamar · Shie Mannor -
2016 : CV @ Scale Challenges »
Manohar Paluri · Gal Chechik -
2016 Workshop: Large Scale Computer Vision Systems »
Manohar Paluri · Lorenzo Torresani · Gal Chechik · Dario Garcia · Du Tran -
2016 Poster: Adaptive Skills Adaptive Partitions (ASAP) »
Daniel J Mankowitz · Timothy A Mann · Shie Mannor -
2015 : Between stochastic and adversarial: forecasting with online ARMA models »
Shie Mannor -
2015 Workshop: Machine Learning for (e-)Commerce »
Esteban Arcaute · Mohammad Ghavamzadeh · Shie Mannor · Georgios Theocharous -
2015 Poster: Online Learning for Adversaries with Memory: Price of Past Mistakes »
Oren Anava · Elad Hazan · Shie Mannor -
2015 Poster: Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach »
Yinlam Chow · Aviv Tamar · Shie Mannor · Marco Pavone -
2015 Poster: Policy Gradient for Coherent Risk Measures »
Aviv Tamar · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2015 Poster: Community Detection via Measure Space Embedding »
Mark Kozdoba · Shie Mannor -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Workshop: Analyzing the omics of the brain »
Michael Hawrylycz · Gal Chechik · Mark Reimers -
2014 Poster: "How hard is my MDP?" The distribution-norm to the rescue »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor -
2014 Poster: Robust Logistic Regression and Classification »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan -
2014 Oral: "How hard is my MDP?" The distribution-norm to the rescue »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor -
2013 Poster: Reinforcement Learning in Robust Markov Decision Processes »
Shiau Hong Lim · Huan Xu · Shie Mannor -
2013 Poster: Online PCA for Contaminated Data »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan -
2013 Poster: Learning Multiple Models via Regularized Weighting »
Daniel Vainsencher · Shie Mannor · Huan Xu -
2012 Poster: The Perturbed Variation »
Maayan Harel · Shie Mannor -
2011 Poster: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Spotlight: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Poster: Committing Bandits »
Loc X Bui · Ramesh Johari · Shie Mannor -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Spotlight: Online Classification with Specificity Constraints »
Andrey Bernstein · Shie Mannor · Nahum Shimkin -
2010 Poster: Online Classification with Specificity Constraints »
Andrey Bernstein · Shie Mannor · Nahum Shimkin -
2010 Poster: Distributionally Robust Markov Decision Processes »
Huan Xu · Shie Mannor -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2008 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Mini Symposium: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2007 Workshop: Machine Learning in Computational Biology (Part 2) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Workshop: Machine Learning in Computational Biology (Part 1) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2006 Workshop: New Problems and Methods in Computational Biology »
Gal Chechik · Quaid Morris · Koji Tsuda · Gunnar Rätsch · Christina Leslie · William S Noble -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Talk: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller