Timezone: »
In deep reinforcement learning, multi-step learning is almost unavoidable to achieve state-of-the-art performance. However, the increased variance that multistep learning brings makes it difficult to increase the update horizon beyond relatively small numbers. In this paper, we report the counterintuitive finding that decreasing the batch size parameter improves the performance of many standard deep RL agents that use multi-step learning. It is well-known that gradient variance decreases with increasing batch sizes, so obtaining improved performance by increasing variance on two fronts is a rather surprising finding. We conduct a broad set of experiments to better understand what we call the variance doubledown phenomenon.
Author Information
Johan Obando Ceron (Mila / Université de Montréal)
Marc Bellemare (Google Brain)
Pablo Samuel Castro (Google)
More from the Same Authors
-
2020 : GANterpretations »
Pablo Samuel Castro -
2020 : Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
Johan Obando Ceron -
2021 : Lifting the veil on hyper-parameters for value-baseddeep reinforcement learning »
João Madeira Araújo · Johan Obando Ceron · Pablo Samuel Castro -
2021 : Lifting the veil on hyper-parameters for value-baseddeep reinforcement learning »
João Madeira Araújo · Johan Obando Ceron · Pablo Samuel Castro -
2022 : A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces »
Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier »
Pierluca D'Oro · Max Schwarzer · Evgenii Nikishin · Pierre-Luc Bacon · Marc Bellemare · Aaron Courville -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2022 Spotlight: Lightning Talks 4A-4 »
Yunhao Tang · LING LIANG · Thomas Chau · Daeha Kim · Junbiao Cui · Rui Lu · Lei Song · Byung Cheol Song · Andrew Zhao · Remi Munos · Łukasz Dudziak · Jiye Liang · Ke Xue · Kaidi Xu · Mark Rowland · Hongkai Wen · Xing Hu · Xiaobin Huang · Simon Du · Nicholas Lane · Chao Qian · Lei Deng · Bernardo Avila Pires · Gao Huang · Will Dabney · Mohamed Abdelfattah · Yuan Xie · Marc Bellemare -
2022 Spotlight: The Nature of Temporal Difference Errors in Multi-step Distributional Reinforcement Learning »
Yunhao Tang · Remi Munos · Mark Rowland · Bernardo Avila Pires · Will Dabney · Marc Bellemare -
2022 : Panel RL Benchmarks »
Minmin Chen · Pablo Samuel Castro · Caglar Gulcehre · Tony Jebara · Peter Stone -
2022 Workshop: Broadening Research Collaborations »
Sara Hooker · Rosanne Liu · Pablo Samuel Castro · FatemehSadat Mireshghallah · Sunipa Dev · Benjamin Rosman · João Madeira Araújo · Savannah Thais · Sara Hooker · Sunny Sanyal · Tejumade Afonja · Swapneel Mehta · Tyler Zhu -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2022 Poster: The Nature of Temporal Difference Errors in Multi-step Distributional Reinforcement Learning »
Yunhao Tang · Remi Munos · Mark Rowland · Bernardo Avila Pires · Will Dabney · Marc Bellemare -
2021 : Invited Talk: Pablo Castro (Google Brain) on Estimating Policy Functions in Payment Systems using Reinforcement Learning »
Pablo Samuel Castro -
2021 Workshop: Ecological Theory of Reinforcement Learning: How Does Task Design Influence Agent Learning? »
Manfred Díaz · Hiroki Furuta · Elise van der Pol · Lisa Lee · Shixiang (Shane) Gu · Pablo Samuel Castro · Simon Du · Marc Bellemare · Sergey Levine -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Q&A Oral presentations »
Matias Valdenegro-Toro · Andres Munoz Medina · Johan Obando Ceron · Anil Batra -
2021 : Lifting the veil on hyper-parameters for value-baseddeep reinforcement learning »
João Madeira Araújo · Johan Obando Ceron · Pablo Samuel Castro -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: The Difficulty of Passive Learning in Deep Reinforcement Learning »
Georg Ostrovski · Pablo Samuel Castro · Will Dabney -
2021 Poster: MICo: Improved representations via sampling-based state similarity for Markov decision processes »
Pablo Samuel Castro · Tyler Kastner · Prakash Panangaden · Mark Rowland -
2020 : Contributed Talk #3: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning »
Rishabh Agarwal · Marlos C. Machado · Pablo Samuel Castro · Marc Bellemare -
2020 : Panel discussion »
Pierre-Yves Oudeyer · Marc Bellemare · Peter Stone · Matt Botvinick · Susan Murphy · Anusha Nagabandi · Ashley Edwards · Karen Liu · Pieter Abbeel -
2020 : Invited talk: Marc Bellemare "Autonomous navigation of stratospheric balloons using reinforcement learning" »
Marc Bellemare -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2016 Poster: Unifying Count-Based Exploration and Intrinsic Motivation »
Marc Bellemare · Sriram Srinivasan · Georg Ostrovski · Tom Schaul · David Saxton · Remi Munos -
2016 Poster: Safe and Efficient Off-Policy Reinforcement Learning »
Remi Munos · Tom Stepleton · Anna Harutyunyan · Marc Bellemare