Timezone: »
Deep reinforcement learning algorithms that learn policies by trial-and-error must learn from limited amounts of data collected by actively interacting with the environment. While many prior works have shown that proper regularization techniques are crucial for enabling data-efficient RL, a general understanding of the bottlenecks in data-efficient RL has remained unclear. Consequently, it has been difficult to devise a universal technique that works well across all domains. In this paper, we attempt to understand the primary bottleneck in sample-efficient deep RL by examining several potential hypotheses such as non-stationarity, excessive action distribution shift, and overfitting. We perform thorough empirical analysis on state-based DeepMind control suite (DMC) tasks in a controlled and systematic way to show that statistical overfitting on the temporal-difference (TD) error is the main culprit that severely affects the performance of deep RL algorithms, and prior methods that lead to good performance do in fact, control the amount of statistical overfitting. This observation gives us a robust principle for making deep RL efficient: we can hill-climb on a notion of validation temporal-difference error by utilizing any form of regularization techniques from supervised learning. We show that a simple online model selection method that targets the statistical overfitting issue is effective across state-based DMC and Gym tasks.
Author Information
Qiyang Li (University of California, Berkeley)
Aviral Kumar (UC Berkeley)
Ilya Kostrikov (University of California Berkeley)
Sergey Levine (UC Berkeley)
More from the Same Authors
-
2021 Spotlight: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Spotlight: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Spotlight: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Test Time Robustification of Deep Models via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2021 : Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning »
Dhruv Shah · Ted Xiao · Alexander Toshev · Sergey Levine · brian ichter -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Should I Run Offline Reinforcement Learning or Behavioral Cloning? »
Aviral Kumar · Joey Hong · Anikait Singh · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Offline Reinforcement Learning with In-sample Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks »
Tianjun Zhang · Ben Eysenbach · Russ Salakhutdinov · Sergey Levine · Joseph Gonzalez -
2021 : The Information Geometry of Unsupervised Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 : Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Ben Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Daniel Shin · Dhruv Shah · Ali Agha · Nicholas Rhinehart · Sergey Levine -
2021 : CoMPS: Continual Meta Policy Search »
Glen Berseth · Zhiwei Zhang · Grace Zhang · Chelsea Finn · Sergey Levine -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Aviral Kumar · Anikait Singh · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Skill Acquisition by Instruction Augmentation on Offline Datasets »
Ted Xiao · Harris Chan · Pierre Sermanet · Ayzaan Wahid · Anthony Brohan · Karol Hausman · Sergey Levine · Jonathan Tompson -
2022 : Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts »
Amrith Setlur · Don Dennis · Benjamin Eysenbach · Aditi Raghunathan · Chelsea Finn · Virginia Smith · Sergey Levine -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Sergey Levine · Russ Salakhutdinov -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Anikait Singh · Aviral Kumar · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : PnP-Nav: Plug-and-Play Policies for Generalizable Visual Navigation Across Robots »
Dhruv Shah · Ajay Sridhar · Arjun Bhorkar · Noriaki Hirose · Sergey Levine -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Russ Salakhutdinov · Sergey Levine -
2022 : Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective »
Raj Ghugare · Homanga Bharadhwaj · Benjamin Eysenbach · Sergey Levine · Ruslan Salakhutdinov -
2022 : Ilya Kostrikov, Aviral Kumar »
Ilya Kostrikov · Aviral Kumar -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 Workshop: 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad" »
Aviral Kumar · Rishabh Agarwal · Aravind Rajeswaran · Wenxuan Zhou · George Tucker · Doina Precup · Aviral Kumar -
2022 Poster: MEMO: Test Time Robustness via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2022 Poster: First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization »
Siddharth Reddy · Sergey Levine · Anca Dragan -
2022 Poster: DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning »
Quan Vuong · Aviral Kumar · Sergey Levine · Yevgen Chebotar -
2022 Poster: In Defense of the Unitary Scalarization for Deep Multi-Task Learning »
Vitaly Kurin · Alessandro De Palma · Ilya Kostrikov · Shimon Whiteson · Pawan K Mudigonda -
2022 Poster: Adversarial Unlearning: Reducing Confidence Along Adversarial Directions »
Amrith Setlur · Benjamin Eysenbach · Virginia Smith · Sergey Levine -
2022 Poster: Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Benjamin Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2022 Poster: Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity »
Abhishek Gupta · Aldo Pacchiano · Yuexiang Zhai · Sham Kakade · Sergey Levine -
2022 Poster: Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Abhishek Gupta · Dibya Ghosh · Sergey Levine · Pulkit Agrawal -
2022 Poster: You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 Poster: Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation »
Michael Chang · Tom Griffiths · Sergey Levine -
2022 Poster: Data-Driven Offline Decision-Making via Invariant Representation Learning »
Han Qi · Yi Su · Aviral Kumar · Sergey Levine -
2022 Poster: Contrastive Learning as Goal-Conditioned Reinforcement Learning »
Benjamin Eysenbach · Tianjun Zhang · Sergey Levine · Russ Salakhutdinov -
2022 Poster: Imitating Past Successes can be Very Suboptimal »
Benjamin Eysenbach · Soumith Udatha · Russ Salakhutdinov · Sergey Levine -
2022 Poster: Improving Zero-Shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions »
Bogdan Mazoure · Ilya Kostrikov · Ofir Nachum · Jonathan Tompson -
2021 Workshop: Offline Reinforcement Learning »
Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar -
2021 : Data-Driven Offline Optimization for Architecting Hardware Accelerators »
Aviral Kumar · Amir Yazdanbakhsh · Milad Hashemi · Kevin Swersky · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision Q&A »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Oral: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control? »
Kate Rakelly · Abhishek Gupta · Carlos Florensa · Sergey Levine -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Bayesian Adaptation for Covariate Shift »
Aurick Zhou · Sergey Levine -
2021 Poster: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Poster: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Poster: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2021 Poster: Autonomous Reinforcement Learning via Subgoal Curricula »
Archit Sharma · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2021 Poster: Adaptive Risk Minimization: Learning to Adapt to Domain Shift »
Marvin Zhang · Henrik Marklund · Nikita Dhawan · Abhishek Gupta · Sergey Levine · Chelsea Finn -
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine