Timezone: »

Train Offline, Test Online: A Real Robot Learning Benchmark
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta
Event URL: https://openreview.net/forum?id=eqrVnNgkYWZ »

Three challenges limit the progress of robot learning research: robots are expensive (few labs can participate), everyone uses different robots (findings do not generalize across labs), and we lack internet-scale robotics data. We take on these challenges via a new benchmark: Train Offline, Test Online (TOTO). TOTO provides remote users with access to shared robots for evaluating methods on common tasks and an open-source dataset of these tasks for offline training. Its manipulation task suite requires challenging generalization to unseen objects, positions, and lighting. We present initial results on TOTO comparing five pretrained visual representations and four offline policy learning baselines, remotely contributed by five institutions. The real promise of TOTO, however, lies in the future: we release the benchmark for additional submissions from any user, enabling easy, direct comparison to several methods without the need to obtain hardware or collect data.

Author Information

Gaoyue Zhou (Carnegie Mellon University)
Victoria Dean (Carnegie Mellon University / DeepMind)
Mohan Kumar Srirama (Carnegie Mellon University)
Aravind Rajeswaran (FAIR)
Jyothish Pari (NYU)
Kyle Hatch (Stanford University)
Aryan Jain (UC Berkeley)
Tianhe Yu (Stanford University)
Pieter Abbeel (UC Berkeley & Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Lerrel Pinto (New York University)
Chelsea Finn (Stanford)
Abhinav Gupta (Facebook AI Research/CMU)

More from the Same Authors