Timezone: »

 
Unleashing The Potential of Data Sharing in Ensemble Deep Reinforcement Learning
Zhixuan Lin · Pierluca D'Oro · Evgenii Nikishin · Aaron Courville
Event URL: https://openreview.net/forum?id=Rbt3zk4I-yM »

This work studies a crucial but often overlooked element of ensemble methods in deep reinforcement learning: data sharing between ensemble members. We show that data sharing enables peer learning, a powerful learning process in which individual agents learn from each other's experience to significantly improve their performance. When given access to the experience of other ensemble members, even the worst agent can match or outperform the previously best agent, triggering a virtuous circle. However, we show that peer learning can be unstable when the agents' ability to learn is impaired due to overtraining on early data. We thus employ the recently proposed solution of periodic resets and show that it ensures effective peer learning. We perform extensive experiments on continuous control tasks from both dense states and pixels to demonstrate the strong effect of peer learning and its interaction with resets.

Author Information

Zhixuan Lin (University of Montreal)
Pierluca D'Oro (Montreal Institute for Learning Algorithms, University of Montreal, University of Montreal)
Evgenii Nikishin (Université de Montréal, MILA)
Aaron Courville (Mila, U. Montreal)

More from the Same Authors

  • 2022 : Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier »
    Pierluca D'Oro · Max Schwarzer · Evgenii Nikishin · Pierre-Luc Bacon · Marc Bellemare · Aaron Courville
  • 2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
    Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare
  • 2022 Poster: Riemannian Diffusion Models »
    Chin-Wei Huang · Milad Aghajohari · Joey Bose · Prakash Panangaden · Aaron Courville
  • 2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
    Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2019 Poster: GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs »
    Yuan Liu · Zehong Shen · Zhixuan Lin · Sida Peng · Hujun Bao · Xiaowei Zhou
  • 2016 : Discussion panel »
    Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton
  • 2016 : Adversarially Learned Inference (ALI) and BiGANs »
    Aaron Courville
  • 2015 Workshop: Multimodal Machine Learning »
    Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho
  • 2014 Poster: Generative Adversarial Nets »
    Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio
  • 2013 Poster: Multi-Prediction Deep Boltzmann Machines »
    Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio
  • 2011 Poster: On Tracking The Partition Function »
    Guillaume Desjardins · Aaron Courville · Yoshua Bengio