Timezone: »
Panel Discussion: "Heading for a Unifying View on nCSI"
Tobias Gerstenberg · Sriraam Natarajan · - Mausam · Guy Van den Broeck · Devendra Dhami
Author Information
Tobias Gerstenberg (Stanford University)
Sriraam Natarajan (The University of Texas at Dallas)
- Mausam (IIT Delhi)
Guy Van den Broeck (UCLA)
I am an Assistant Professor and Samueli Fellow at UCLA, in the Computer Science Department, where I direct the Statistical and Relational Artificial Intelligence (StarAI) lab. My research interests are in Machine Learning (Statistical Relational Learning, Tractable Learning), Knowledge Representation and Reasoning (Graphical Models, Lifted Probabilistic Inference, Knowledge Compilation), Applications of Probabilistic Reasoning and Learning (Probabilistic Programming, Probabilistic Databases), and Artificial Intelligence in general.
Devendra Dhami (CS Department, TU Darmstadt, TU Darmstadt)
More from the Same Authors
-
2021 Spotlight: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2023 Poster: Do Not Marginalize Mechanisms, Rather Consolidate! »
Moritz Willig · Matej Zečević · Devendra Dhami · Kristian Kersting -
2023 Poster: A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 Poster: Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng · Guy Van den Broeck -
2023 Poster: MoCa: Measuring Human-Language Model Alignment on Causal and Moral Judgment Tasks »
Allen Nie · Yuhui Zhang · Atharva Shailesh Amdekar · Chris Piech · Tatsunori Hashimoto · Tobias Gerstenberg -
2023 Poster: Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction »
Quentin Delfosse · Hikaru Shindo · Devendra Dhami · Kristian Kersting -
2023 Poster: A Unified Approach to Count-Based Weakly Supervised Learning »
Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck -
2023 Poster: Understanding Social Reasoning in Language Models with Language Models »
Kanishk Gandhi · Jan-Philipp Franken · Tobias Gerstenberg · Noah Goodman -
2022 : AI can learn from data. But can it learn to reason? »
Guy Van den Broeck -
2022 : A Counterfactual Simulation Model of Causal Judgment »
Tobias Gerstenberg -
2022 : Tobias Gerstenberg »
Tobias Gerstenberg -
2022 : Neural Models with Symbolic Representations for Perceptuo-Reasoning Tasks »
- Mausam -
2022 Workshop: Workshop on neuro Causal and Symbolic AI (nCSI) »
Matej Zečević · Devendra Dhami · Christina Winkler · Thomas Kipf · Robert Peharz · Petar Veličković -
2022 : Panel »
Guy Van den Broeck · Cassio de Campos · Denis Maua · Kristian Kersting · Rianne van den Berg -
2022 : Eye-tracking what's going on in the mind »
Tobias Gerstenberg -
2022 : Attending to What's Not There »
Tobias Gerstenberg -
2022 Poster: Semantic Probabilistic Layers for Neuro-Symbolic Learning »
Kareem Ahmed · Stefano Teso · Kai-Wei Chang · Guy Van den Broeck · Antonio Vergari -
2022 Poster: A Solver-free Framework for Scalable Learning in Neural ILP Architectures »
Yatin Nandwani · Rishabh Ranjan · - Mausam · Parag Singla -
2022 Poster: Uncalibrated Models Can Improve Human-AI Collaboration »
Kailas Vodrahalli · Tobias Gerstenberg · James Zou -
2022 Poster: Sparse Probabilistic Circuits via Pruning and Growing »
Meihua Dang · Anji Liu · Guy Van den Broeck -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 : Tobias Gerstenberg - Going beyond the here and now: Counterfactual simulation in human cognition »
Tobias Gerstenberg -
2021 Poster: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models »
Matej Zečević · Devendra Dhami · Athresh Karanam · Sriraam Natarajan · Kristian Kersting -
2021 Oral: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 Poster: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2020 : Contributed talks 6: Group Fairness by Probabilistic Modeling with Latent Fair Decisions »
YooJung Choi · Guy Van den Broeck -
2020 Poster: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Spotlight: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Poster: Counterexample-Guided Learning of Monotonic Neural Networks »
Aishwarya Sivaraman · Golnoosh Farnadi · Todd Millstein · Guy Van den Broeck -
2019 : Invited Talk (Guy Van den Broeck) »
Guy Van den Broeck -
2019 Poster: Towards Hardware-Aware Tractable Learning of Probabilistic Models »
Laura Galindez Olascoaga · Wannes Meert · Nimish Shah · Marian Verhelst · Guy Van den Broeck -
2019 Poster: On Tractable Computation of Expected Predictions »
Pasha Khosravi · YooJung Choi · Yitao Liang · Antonio Vergari · Guy Van den Broeck -
2019 Poster: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2019 Spotlight: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2018 Poster: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2018 Oral: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2016 Poster: New Liftable Classes for First-Order Probabilistic Inference »
Seyed Mehran Kazemi · Angelika Kimmig · Guy Van den Broeck · David Poole -
2015 Poster: Tractable Learning for Complex Probability Queries »
Jessa Bekker · Jesse Davis · Arthur Choi · Adnan Darwiche · Guy Van den Broeck -
2013 Poster: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2013 Spotlight: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2011 Poster: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck -
2011 Oral: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck