Timezone: »
Learning-based behavior prediction methods are increasingly being deployed in real-world autonomous systems, e.g., in fleets of self-driving vehicles, which are beginning to commercially operate in major cities across the world. Despite their advancements, however, the vast majority of prediction systems are specialized to a set of well-explored geographic regions or operational design domains, complicating deployment to additional cities, countries, or continents. Towards this end, we present a novel method for efficiently adapting behavior prediction models to new environments. Our approach leverages recent advances in meta-learning, specifically Bayesian regression, to augment existing behavior prediction models with an adaptive layer that enables efficient domain transfer via offline fine-tuning, online adaptation, or both. Experiments across multiple real-world datasets demonstrate that our method can efficiently adapt to a variety of unseen environments.
Author Information
Boris Ivanovic (Stanford University)
James Harrison (Google)
Marco Pavone (Stanford University)
More from the Same Authors
-
2022 : Meta-Learning General-Purpose Learning Algorithms with Transformers »
Louis Kirsch · Luke Metz · James Harrison · Jascha Sohl-Dickstein -
2022 : Foundation Models for Semantic Novelty in Reinforcement Learning »
Tarun Gupta · Peter Karkus · Tong Che · Danfei Xu · Marco Pavone -
2022 : DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles »
Peter Karkus · Boris Ivanovic · Shie Mannor · Marco Pavone -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2022 : Meta-Learning General-Purpose Learning Algorithms with Transformers »
Louis Kirsch · Luke Metz · James Harrison · Jascha Sohl-Dickstein -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2023 Poster: Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies »
Oscar Li · James Harrison · Jascha Sohl-Dickstein · Virginia Smith · Luke Metz -
2023 Poster: PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction »
Apoorva Sharma · Sushant Veer · Asher Hancock · Heng Yang · Marco Pavone · Anirudha Majumdar -
2023 Poster: trajdata: A Unified Interface to Multiple Human Trajectory Datasets »
Boris Ivanovic · Guanyu Song · Igor Gilitschenski · Marco Pavone -
2022 : Invited Talk: Marco Pavone »
Marco Pavone -
2022 Poster: A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases »
James Harrison · Luke Metz · Jascha Sohl-Dickstein -
2021 Poster: Data Sharing and Compression for Cooperative Networked Control »
Jiangnan Cheng · Marco Pavone · Sachin Katti · Sandeep Chinchali · Ao Tang -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders »
Masha Itkina · Boris Ivanovic · Ransalu Senanayake · Mykel J Kochenderfer · Marco Pavone -
2019 : Marco Pavone: On Safe and Efficient Human-robot Interactions via Multi-modal Intent Modeling and Reachability-based Safety Assurance »
Marco Pavone -
2019 Poster: High-Dimensional Optimization in Adaptive Random Subspaces »
Jonathan Lacotte · Mert Pilanci · Marco Pavone -
2018 : Panel »
Yimeng Zhang · Alfredo Canziani · Marco Pavone · Dorsa Sadigh · Kurt Keutzer -
2018 : Invited Talk: Marco Pavone, Stanford »
Marco Pavone -
2015 Poster: Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach »
Yinlam Chow · Aviv Tamar · Shie Mannor · Marco Pavone