Timezone: »
Bayesian Optimization provides a sample-efficient approach to optimize Internet systems that are evaluated with randomized experiments. Such evaluations are often resource- and time- consuming in order to measure noisy and long-term outcomes. Thus, the initial randomized design, i.e. determining number of test groups and sample sizes, plays a critical role in building an accurate Gaussian Process model to optimize efficiently and decreasing experimentation cost. We develop a simulation-based method with meta-learned priors to decide the optimal design for the initial batch of GP-modeled randomized experiments. The meta-learning is performed on a large corpus of randomized experiments conducted at Meta and obtains sensible GP priors for simulating across different designs. The one-shot optimal design policy is derived by training a machine learning model with simulation data to map experiment characteristics to an optimal design. Our evaluations show that our proposed optimal design significantly improves resource-efficiency while achieving a target GP model accuracy.
Author Information
Jelena Markovic (Meta)
Qing Feng (Facebook)
Eytan Bakshy (Meta)
More from the Same Authors
-
2021 : Practical Policy Optimization with PersonalizedExperimentation »
Mia Garrard · Hanson Wang · Ben Letham · Zehui Wang · Yin Huang · Yichun Hu · Chad Zhou · Norm Zhou · Eytan Bakshy -
2022 : Sparse Bayesian Optimization »
Sulin Liu · Qing Feng · David Eriksson · Ben Letham · Eytan Bakshy -
2022 : Panel »
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka -
2022 Poster: Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization »
Samuel Daulton · Xingchen Wan · David Eriksson · Maximilian Balandat · Michael A Osborne · Eytan Bakshy -
2021 Poster: Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs »
Raul Astudillo · Daniel Jiang · Maximilian Balandat · Eytan Bakshy · Peter Frazier -
2021 Poster: Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2021 Poster: Bayesian Optimization with High-Dimensional Outputs »
Wesley Maddox · Maximilian Balandat · Andrew Wilson · Eytan Bakshy -
2020 Poster: Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2020 Poster: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization »
Maximilian Balandat · Brian Karrer · Daniel Jiang · Samuel Daulton · Ben Letham · Andrew Wilson · Eytan Bakshy -
2020 Poster: Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization »
Ben Letham · Roberto Calandra · Akshara Rai · Eytan Bakshy -
2020 Poster: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Spotlight: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2019 : Invited Speaker: Eytan Bakshy »
Eytan Bakshy