Timezone: »

 
Using Epidemic Multi-agent Synthetic Datasets for Predictions in Communication Networks: An LSTM Perspective
ChukwuNonso H Nwokoye · Chukwuemeka E Etodike · Queen Nkechi Chigbue

The epidemic Vulnerable-Latent-Contagious-Recovery-Inoculation (VLCRV-I) was proposed. Thereafter, an equivalent multi agent model was developed in order to cater for malware spread in computer networks. Then, various LSTM types was used for prediction and metrics such as Mean Squared Error, Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error were used to evaluate model performance. The best prediction of vulnerable computers were obtained using Stacked LSTM of 512 Layers and the Relu Activation Function.

Author Information

ChukwuNonso H Nwokoye (Nnamdi Azikiwe Univeristy, Awka)
Chukwuemeka E Etodike (Nnamdi Azikiwe University Awka)
Queen Nkechi Chigbue (Nnamdi Azikiwe University)

More from the Same Authors

  • 2019 : Poster session »
    Michael Melese Woldeyohannis · Bernardt Duvenhage · Nyamos Waigama · Asaye Bir Senay · Claire Babirye · Tensaye Ayalew · Kelechi Ogueji · Vinay Prabhu · Prabu Ravindran · Fadilulah Wahab · ChukwuNonso H Nwokoye · Paul Duckworth · Hafte Abera · Abebe Mideksa · Loubna Benabbou · Anugraha Sinha · Ivan Kiskin · Robert Soden · Tupokigwe Isagah · Rehema Mwawado · Yimer Mohammed · Bryan Wilder · Daniel Omeiza · Sunayana Rane · Richard Mgaya · Samsun Knight · Jessenia Gonzalez Villarreal · Eyob Beyene · Monika Obrocka Tulinska · Luis Fernando Cantu Diaz de Leon · Joseph Aro · Michael T Smith · Michael Famoroti · Praneeth Vepakomma · Ramesh Raskar · Debjani Bhowmick · Chukwunonso H Nwokoye · Alejandro Noriega Campero · Hope Mbelwa · Anusua Trivedi