Timezone: »
We define and tackle region-of-interest adaptive (RoI-adaptive) acquisition for accelerated MRI. Existing methods for identifying k-space sampling patterns in accelerated MRI are optimized for the quality of the entire image or a general image-wide task. However, MRI is often acquired to image a specific RoI, such as a suspected pathology. We demonstrate that a sampling strategy that serves for a general multi-purpose task is often suboptimal for each individual objective. We propose a framework that efficiently learns MRI sampling masks specific to the RoI, leading to substantially faster acquisition that still enables accurate analysis of the RoI. We show empirically that our RoI-adaptive acquisition approach significantly outperforms general acquisition baselines in the RoI reconstruction and segmentation tasks.
Author Information
Zihui Wu (Caltech)
Tianwei Yin (UT Austin)
Adrian Dalca (MIT, HMS)
Katherine Bouman (Caltech)
More from the Same Authors
-
2020 : Learning MRI contrast agnostic registration »
Malte Hoffmann · Adrian Dalca -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : UniverSeg: Universal Medical Image Segmentation »
Victor Butoi · Jose Javier Gonzalez Ortiz · Tianyu Ma · John Guttag · Mert Sabuncu · Adrian Dalca -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Contrast Invariant Feature Representations for Medical Image Analysis »
Yue Zhi, Russ Chua · Adrian Dalca -
2021 Poster: DeepGEM: Generalized Expectation-Maximization for Blind Inversion »
Angela Gao · Jorge Castellanos · Yisong Yue · Zachary Ross · Katherine Bouman -
2021 Poster: Multimodal Virtual Point 3D Detection »
Tianwei Yin · Xingyi Zhou · Philipp Krähenbühl -
2020 : Invited Talk (Katherine Bouman) »
Katherine Bouman -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu -
2018 : Poster session »
David Zeng · Marzieh S. Tahaei · Shuai Chen · Felix Meister · Meet Shah · Anant Gupta · Ajil Jalal · Eirini Arvaniti · David Zimmerer · Konstantinos Kamnitsas · Pedro Ballester · Nathaniel Braman · Udaya Kumar · Sil C. van de Leemput · Junaid Qadir · Hoel Kervadec · Mohamed Akrout · Adrian Tousignant · Matthew Ng · Raghav Mehta · Miguel Monteiro · Sumana Basu · Jonas Adler · Adrian Dalca · Jizong Peng · Sungyeob Han · Xiaoxiao Li · Karthik Gopinath · Joseph Cheng · Bogdan Georgescu · Kha Gia Quach · Karthik Sarma · David Van Veen -
2018 : Oral session II »
Sil C. van de Leemput · Adrian Dalca · Karthik Gopinath -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Poster: Gaussian Process Prior Variational Autoencoders »
Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka