Timezone: »

 
A Hybrid Classifier with Diverse Features Selected from Feature Sets Extracted by Machine Learning Models for Image Classification
Luna Zhang

Usually, parameters of a machine learning (ML) model are used to fine-tune a new ML model using a new dataset. Since a ML model can generate other useful information, such as features, we propose a new method that extracts locally diverse features sets by using different ML models, then applies feature selection (FS) methods to identify the best globally diverse hybrid features, and finally uses them to build an accurate hybrid classifier. These ML models may be pretrained and/or non-pretrained. Simulation results using the medical image dataset DermaMNIST (from MedMNIST2D) indicate that the new hybrid classifiers using the hybrid features extracted by a fine-tuned pretrained ResNet model and the Vision Transformer (ViT) can outperform both the fine-tuned pretrained ResNet model and the ViT, and also perform more accurately than the five commonly used image classifiers (ResNet18, ResNet50, auto-sklearn, AutoKeras, and Google AutoML Vision). New optimization methods will be developed to extract highly informative feature sets from more fine-tuned pretrained ML models and other non-pretrained ML models, select best features, and build a highly accurate, fast, energy-efficient, and memory-efficient classifier for image recognition.

Author Information

Luna Zhang (Stony Brook University)

More from the Same Authors

  • 2019 : Coffee Break & Poster Session 2 »
    Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN
  • 2018 : Poster Session I »
    Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang