Timezone: »
Creative machines have long been a subject of interest for generative modeling research. One research goal of machine creativity is to create machine processes which are data adaptive to develop new creative directions, which may inspire users or be used to provide creative expansions of current ideas. Several works propose models which leverage data-driven deep learning approaches to generate "out-of-domain" or novel samples that deviate from the dataset on which these models are trained. In these existing works, generative model weights are only optimized on real datasets, rather than incorporating model generated outputs back into the training loop.In this work, we propose expanding the scope of a generative model by iteratively training on generated samples, in addition to the given training data. In this paper, we propose Datasets That Are Not, a procedure for accumulating generated samples and iteratively training a generative model on this expanding dataset. Specifically, we expand upon Digits that Are Not, a sparsity-based autoencoder for the inner generative model, due to the variety and novelty of outputs when trained on the standard MNIST dataset. Our results show that by learning on generated data, the model effectively reinforces its own hallucinations, directing generated outputs in new and unexpected directions \emph{away} from initial training data while retaining core semantics.
Author Information
Yusong Wu (University of Montreal)
Kyle Kastner (Université de Montréal)
Tim Cooijmans (MILA, Université de Montréal)
Cheng-Zhi Anna Huang (Google Brain)
Aaron Courville (Mila, U. Montreal)
More from the Same Authors
-
2021 Spotlight: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : MIDI-DDSP: Hierarchical Modeling of Music for Detailed Control »
Yusong Wu · Ethan Manilow · Kyle Kastner · Tim Cooijmans · Aaron Courville · Cheng-Zhi Anna Huang · Jesse Engel -
2022 : Unleashing The Potential of Data Sharing in Ensemble Deep Reinforcement Learning »
Zhixuan Lin · Pierluca D'Oro · Evgenii Nikishin · Aaron Courville -
2022 : Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier »
Pierluca D'Oro · Max Schwarzer · Evgenii Nikishin · Pierre-Luc Bacon · Marc Bellemare · Aaron Courville -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2022 : Q & A »
Cheng-Zhi Anna Huang · Negar Rostamzadeh · Mark Riedl -
2022 Tutorial: Creative Culture and Machine Learning »
Negar Rostamzadeh · Cheng-Zhi Anna Huang · Mark Riedl -
2022 : Tutorial part 1 »
Negar Rostamzadeh · Mark Riedl · Cheng-Zhi Anna Huang -
2022 : Efficient Controllable Generative Models for Music and Performance Synthesis »
Cheng-Zhi Anna Huang -
2022 Poster: Riemannian Diffusion Models »
Chin-Wei Huang · Milad Aghajohari · Joey Bose · Prakash Panangaden · Aaron Courville -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar -
2020 Poster: Unsupervised Learning of Dense Visual Representations »
Pedro O. Pinheiro · Amjad Almahairi · Ryan Benmalek · Florian Golemo · Aaron Courville -
2019 Poster: Ordered Memory »
Yikang Shen · Shawn Tan · Arian Hosseini · Zhouhan Lin · Alessandro Sordoni · Aaron Courville -
2019 Poster: MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis »
Kundan Kumar · Rithesh Kumar · Thibault de Boissiere · Lucas Gestin · Wei Zhen Teoh · Jose Sotelo · Alexandre de Brébisson · Yoshua Bengio · Aaron Courville -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2018 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Erik Wijmans · Samyak Datta · Ethan Perez · Mateusz Malinowski · Stefan Lee · Peter Anderson · Aaron Courville · Jeremie MARY · Dhruv Batra · Devi Parikh · Olivier Pietquin · Chiori HORI · Tim Marks · Anoop Cherian -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Abhishek Das · Satwik Kottur · Stefan Lee · Mateusz Malinowski · Olivier Pietquin · Devi Parikh · Dhruv Batra · Aaron Courville · Jeremie Mary -
2017 Poster: Improved Training of Wasserstein GANs »
Ishaan Gulrajani · Faruk Ahmed · Martin Arjovsky · Vincent Dumoulin · Aaron Courville -
2017 Poster: GibbsNet: Iterative Adversarial Inference for Deep Graphical Models »
Alex Lamb · R Devon Hjelm · Yaroslav Ganin · Joseph Paul Cohen · Aaron Courville · Yoshua Bengio -
2017 Poster: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Spotlight: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Adversarially Learned Inference (ALI) and BiGANs »
Aaron Courville -
2016 Poster: Professor Forcing: A New Algorithm for Training Recurrent Networks »
Alex M Lamb · Anirudh Goyal · Ying Zhang · Saizheng Zhang · Aaron Courville · Yoshua Bengio -
2015 : Introduction »
Aaron Courville -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: A Recurrent Latent Variable Model for Sequential Data »
Junyoung Chung · Kyle Kastner · Laurent Dinh · Kratarth Goel · Aaron Courville · Yoshua Bengio -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2013 Poster: Multi-Prediction Deep Boltzmann Machines »
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio -
2011 Poster: On Tracking The Partition Function »
Guillaume Desjardins · Aaron Courville · Yoshua Bengio -
2009 Poster: An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism »
Aaron Courville · Douglas Eck · Yoshua Bengio -
2009 Session: Oral Session 3: Deep Learning and Network Models »
Aaron Courville -
2008 Session: Oral session 11: Attention and Mind »
Aaron Courville -
2007 Spotlight: The rat as particle filter »
Nathaniel D Daw · Aaron Courville -
2007 Poster: The rat as particle filter »
Nathaniel D Daw · Aaron Courville