Timezone: »
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling relational data, they impose a strong assumption on the availability of the node or edge features of the graph. In many real-world applications, however, features are only partially available; for example, in social networks, age and gender are available only for a small subset of users. We present a general approach for handling missing features in graph machine learning applications that is based on minimization of the Dirichlet energy and leads to a diffusion-type differential equation on the graph. The discretization of this equation produces a simple, fast and scalable algorithm which we call Feature Propagation. We experimentally show that the proposed approach outperforms previous methods on seven common node-classification benchmarks and can withstand surprisingly high rates of missing features: on average we observe only around 4% relative accuracy drop when 99% of the features are missing. Moreover, it takes only 10 seconds to run on a graph with ~2.5M nodes and ~23M edges on a single GPU.
Author Information
Emanuele Rossi (Imperial College London)
Henry Kenlay (University of Oxford)
Maria Gorinova (University of Edinburgh)
Benjamin Chamberlain (Twitter)
Xiaowen Dong (Oxford)
Michael Bronstein (USI)
More from the Same Authors
-
2021 : Interaction data are identifiable even across long periods of time »
Ana-Maria Cretu · Federico Monti · Stefano Marrone · Xiaowen Dong · Michael Bronstein · Yves-Alexandre Montjoye -
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Provably Efficient Causal Model-Based Reinforcement Learning for Environment-Agnostic Generalization »
Mirco Mutti · Riccardo De Santi · Emanuele Rossi · Juan Calderon · Michael Bronstein · Marcello Restelli -
2022 : Hyperbolic Deep Reinforcement Learning »
Edoardo Cetin · Benjamin Chamberlain · Michael Bronstein · jonathan j hunt -
2023 Workshop: Temporal Graph Learning Workshop @ NeurIPS 2023 »
Farimah Poursafaei · Shenyang Huang · Kellin Pelrine · Julia Gastinger · Emanuele Rossi · Michael Bronstein · Reihaneh Rabbany -
2022 : Understanding stock market instability via graph auto-encoders »
Dragos Gorduza · Xiaowen Dong · Stefan Zohren -
2022 : Panel »
Vikas Garg · Pan Li · Srijan Kumar · Emanuele Rossi · Shenyang Huang -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2022 Poster: Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries »
Fabrizio Frasca · Beatrice Bevilacqua · Michael Bronstein · Haggai Maron -
2021 : GRAND: Graph Neural Diffusion »
Benjamin Chamberlain · James Rowbottom · Maria Gorinova · Stefan Webb · Emanuele Rossi · Michael Bronstein -
2021 Poster: Beltrami Flow and Neural Diffusion on Graphs »
Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein -
2021 Poster: Learning to Learn Graph Topologies »
Xingyue Pu · Tianyue Cao · Xiaoyun Zhang · Xiaowen Dong · Siheng Chen -
2021 Poster: Adversarial Attacks on Graph Classifiers via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Robin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2020 : Invited Talk 1: Geometric deep learning for 3D human body synthesis »
Michael Bronstein -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković