Timezone: »
Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as powerful methods for link prediction (LP). Their performances are less impressive on community detection (CD), where they are often outperformed by simpler alternatives such as the Louvain method. It is still unclear to what extent one can improve CD with GAE and VGAE, especially in the absence of node features. It is moreover uncertain whether one could do so while simultaneously preserving good performances on LP in a multi-task setting. In this workshop paper, summarizing results from our journal publication, we show that jointly addressing these two tasks with high accuracy is possible. For this purpose, we introduce a community-preserving message passing scheme, doping our GAE and VGAE encoders by considering both the initial graph and Louvain-based prior communities when computing embedding spaces. Inspired by modularity-based clustering, we further propose novel training and optimization strategies specifically designed for joint LP and CD. We demonstrate the empirical effectiveness of our approach, referred to as Modularity-Aware GAE and VGAE, on various real world graphs.
Author Information
Guillaume SALHA (Deezer Research / École Polytechnique, France)
Johannes Lutzeyer (Ecole polytechnique)
George Dasoulas (Harvard University)
Romain Hennequin (Deezer SA)
Michalis Vazirgiannis (École Polytechnique)
More from the Same Authors
-
2022 Poster: DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection »
Xuanwen Huang · Yang Yang · Yang Wang · Chunping Wang · Zhisheng Zhang · Jiarong Xu · Lei Chen · Michalis Vazirgiannis -
2022 : Structure-Aware Antibiotic Resistance Classification using Graph Neural Networks »
Aymen Qabel · Sofiane ENNADIR · Giannis Nikolentzos · Johannes Lutzeyer · Michail Chatzianastasis · Henrik Boström · Michalis Vazirgiannis -
2022 : Improving Graph Neural Networks at Scale: Combining Approximate PageRank and CoreRank »
Ariel Ramos Vela · Johannes Lutzeyer · Anastasios Giovanidis · Michalis Vazirgiannis -
2022 Spotlight: DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection »
Xuanwen Huang · Yang Yang · Yang Wang · Chunping Wang · Zhisheng Zhang · Jiarong Xu · Lei Chen · Michalis Vazirgiannis -
2020 Poster: Random Walk Graph Neural Networks »
Giannis Nikolentzos · Michalis Vazirgiannis -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao