Timezone: »
Current graph neural networks (GNNs) that tackle node classification on graphs tend to only focus on nodewise scores and are solely evaluated by nodewise metrics. This limits uncertainty estimation on graphs since nodewise marginals do not fully characterize the joint distribution given the graph structure. In this work, we propose novel edgewise metrics, namely the edgewise expected calibration error (ECE) and the agree/disagree ECEs, which provide criteria for uncertainty estimation on graphs beyond the nodewise setting. Our experiments demonstrate that the proposed edgewise metrics can complement the nodewise results and yield additional insights. Moreover, we show that GNN models which consider the structured prediction problem on graphs tend to have better uncertainty estimations, which illustrates the benefit of going beyond the nodewise setting.
Author Information
Hans Hao-Hsun Hsu (Technische Universität München)
Yuesong Shen (Technical University of Munich)
Daniel Cremers (Technical University of Munich)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2022 Poster: What Makes Graph Neural Networks Miscalibrated? »
Hans Hao-Hsun Hsu · Yuesong Shen · Christian Tomani · Daniel Cremers -
2022 Poster: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 Spotlight: Deep Combinatorial Aggregation »
Yuesong Shen · Daniel Cremers -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: What Makes Graph Neural Networks Miscalibrated? »
Hans Hao-Hsun Hsu · Yuesong Shen · Christian Tomani · Daniel Cremers -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2021 Poster: Sparse Quadratic Optimisation over the Stiefel Manifold with Application to Permutation Synchronisation »
Florian Bernard · Daniel Cremers · Johan Thunberg -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-Taixé · Daniel Cremers -
2016 Poster: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers -
2016 Oral: Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images »
Vladimir Golkov · Marcin Skwark · Antonij Golkov · Alexey Dosovitskiy · Thomas Brox · Jens Meiler · Daniel Cremers