Timezone: »
We introduce a novel approach to conformer search, the discovery of three-dimensional structures for two-dimensional molecular formulas. We focus on organic molecules using deep imitation learning and equivariant graph neural networks, with the prospect of using reinforcement learning algorithms for fine tuning. To that end, we present our interactive environment that describes the molecule in a ridig-rotor approximation and leverage a behavioral cloning torsion policy to autoregressively determine the dihedral angles of the molecule ultimately yielding a three-dimensional molecular structure. For our policy architecture, we leverage an SE(3) equivariant neural network, which enables us to exploit inherent molecular symmetries and to respect the topology of the angle distribution using a Mixture of Projected Normals action distribution. Our preliminary results for a policy trained on a behavioral cloning objective using the QM9 dataset for expert trajectories shows that the policy can accurately predict torsion angles for various molecules. We believe this to be a promising starting point for future work pertaining to performing conformer search using deep reinforcement learning.
Author Information
Luca Thiede (University of Toronto)
Santiago Miret (Intel AI Lab)
Krzysztof Sadowski
Haoping Xu (University of Toronto)
Mariano Phielipp (Intel AI Labs)
Dr. Mariano Phielipp works at the Intel AI Lab inside the Intel Artificial Intelligence Products Group. His work includes research and development in deep learning, deep reinforcement learning, machine learning, and artificial intelligence. Since joining Intel, Dr. Phielipp has developed and worked on Computer Vision, Face Recognition, Face Detection, Object Categorization, Recommendation Systems, Online Learning, Automatic Rule Learning, Natural Language Processing, Knowledge Representation, Energy Based Algorithms, and other Machine Learning and AI-related efforts. Dr. Phielipp has also contributed to different disclosure committees, won an Intel division award related to Robotics, and has a large number of patents and pending patents. He has published on NeuriPS, ICML, ICLR, AAAI, IROS, IEEE, SPIE, IASTED, and EUROGRAPHICS-IEEE Conferences and Workshops.
Alan Aspuru-Guzik (University of Toronto)
More from the Same Authors
-
2020 : Safety Aware Reinforcement Learning (SARL) »
Santiago Miret -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2021 : Learning Discrete Neural Reaction Class to Improve Retrosynthesis Prediction »
Théophile Gaudin · Animesh Garg · Alan Aspuru-Guzik -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2022 : Offline Policy Comparison with Confidence: Benchmarks and Baselines »
Anurag Koul · Mariano Phielipp · Alan Fern -
2022 : Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2022 : Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines »
Nathanael Kusanda · Gary Tom · Riley Hickman · AkshatKumar Nigam · Kjell Jorner · Alan Aspuru-Guzik -
2022 : On Multi-information source Constraint Active Search »
Gustavo Malkomes · Bolong Cheng · Santiago Miret -
2022 : PhAST: Physics-Aware, Scalable, and Task-specific GNNs for accelerated catalyst design »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Yoshua Bengio · David Rolnick -
2022 : Human-in-the-Loop Approaches For Task Guidance In Manufacturing Settings »
Ramesh Manuvinakurike · Santiago Miret · Richard Beckwith · Saurav Sahay · Giuseppe Raffa -
2022 : Group SELFIES: A Robust Fragment-Based Molecular String Representation »
Austin Cheng · Andy Cai · Santiago Miret · Gustavo Malkomes · Mariano Phielipp · Alan Aspuru-Guzik -
2022 : Hyperparameter Optimization of Graph Neural Networks for the OpenCatalyst Dataset: A Case Study »
Carmelo Gonzales · Eric Lee · Kin Long Kelvin Lee · Joyce Tang · Santiago Miret -
2022 : Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science »
Santiago Miret · Kin Long Kelvin Lee · Carmelo Gonzales · Marcel Nassar · Krzysztof Sadowski -
2022 Workshop: AI for Accelerated Materials Design (AI4Mat) »
Santiago Miret · Marta Skreta · Zamyla Morgan-Chan · Benjamin Sanchez-Lengeling · Shyue Ping Ong · Alan Aspuru-Guzik -
2021 : Neuroevolution-Enhanced Multi-Objective Optimization for Mixed-Precision Quantization »
Santiago Miret · Vui Seng Chua · Mattias Marder · Mariano Phielipp · Nilesh Jain · Somdeb Majumdar -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Language-Conditioned Imitation Learning for Robot Manipulation Tasks »
Simon Stepputtis · Joseph Campbell · Mariano Phielipp · Stefan Lee · Chitta Baral · Heni Ben Amor -
2020 Spotlight: Language-Conditioned Imitation Learning for Robot Manipulation Tasks »
Simon Stepputtis · Joseph Campbell · Mariano Phielipp · Stefan Lee · Chitta Baral · Heni Ben Amor -
2020 Poster: Instance-based Generalization in Reinforcement Learning »
Martin Bertran · Natalia Martinez · Mariano Phielipp · Guillermo Sapiro -
2019 : Alán Aspuru-Guzik »
Alan Aspuru-Guzik -
2019 : Molecules and Genomes »
David Haussler · Djork-Arné Clevert · Michael Keiser · Alan Aspuru-Guzik · David Duvenaud · David Jones · Jennifer Wei · Alexander D'Amour -
2019 Poster: Goal-conditioned Imitation Learning »
Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp -
2017 : Machine Learning for Molecular Materials Design »
Alan Aspuru-Guzik -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda