Timezone: »
The proliferation of deep learning (DL) techniques in recent years has often resulted in the creation of progressively larger datasets and deep learning architectures. As the expressive power of DL models has grown, so has the compute capacity needed to effectively train the models. One such example is the OpenCatalyst dataset in the emerging field of scientific machine learning, which has elevated the compute requirements needed to effectively train graph neural networks (GNNs) on complex scientific data. The extensive compute complexity involved in training GNNs on the OpenCatalyst dataset makes it very costly to perform hyperparameter optimization (HPO) using traditional methods, such as grid search or even Bayesian optimization-based approaches. Given this challenge, we propose a novel methodology for effective, cost-aware HPO on GNN training on OpenCatalyst that leverages a multi-fidelity approach with experiments on reduced datasets, hyperparameter importance, and computational budget considerations. We show speed ups by over 50 percent when performing hyperparameter optimization of the E(n)-GNN model on the OpenCatalyst dataset.
Author Information
Carmelo Gonzales (Intel)
Eric Lee (Intel)
Kin Long Kelvin Lee (Intel Corporation)
Joyce Tang (Intel)
Santiago Miret (Intel AI Lab)
More from the Same Authors
-
2020 : Safety Aware Reinforcement Learning (SARL) »
Santiago Miret -
2022 : Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2022 : On Multi-information source Constraint Active Search »
Gustavo Malkomes · Bolong Cheng · Santiago Miret -
2022 : PhAST: Physics-Aware, Scalable, and Task-specific GNNs for accelerated catalyst design »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Yoshua Bengio · David Rolnick -
2022 : Human-in-the-Loop Approaches For Task Guidance In Manufacturing Settings »
Ramesh Manuvinakurike · Santiago Miret · Richard Beckwith · Saurav Sahay · Giuseppe Raffa -
2022 : Group SELFIES: A Robust Fragment-Based Molecular String Representation »
Austin Cheng · Andy Cai · Santiago Miret · Gustavo Malkomes · Mariano Phielipp · Alan Aspuru-Guzik -
2022 : Conformer Search Using SE3-Transformers and Imitation Learning »
Luca Thiede · Santiago Miret · Krzysztof Sadowski · Haoping Xu · Mariano Phielipp · Alan Aspuru-Guzik -
2023 Workshop: AI for Accelerated Materials Design (AI4Mat-2023) »
Santiago Miret · Benjamin Sanchez-Lengeling · Jennifer Wei · Vineeth Venugopal · Marta Skreta · N M Anoop Krishnan -
2022 : Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science »
Santiago Miret · Kin Long Kelvin Lee · Carmelo Gonzales · Marcel Nassar · Krzysztof Sadowski -
2022 Workshop: AI for Accelerated Materials Design (AI4Mat) »
Santiago Miret · Marta Skreta · Zamyla Morgan-Chan · Benjamin Sanchez-Lengeling · Shyue Ping Ong · Alan Aspuru-Guzik -
2021 : Neuroevolution-Enhanced Multi-Objective Optimization for Mixed-Precision Quantization »
Santiago Miret · Vui Seng Chua · Mattias Marder · Mariano Phielipp · Nilesh Jain · Somdeb Majumdar