Timezone: »
Author Information
Irina Higgins (DeepMind)
Taco Cohen (Qualcomm AI Research)
Taco Cohen is a machine learning research scientist at Qualcomm AI Research in Amsterdam and a PhD student at the University of Amsterdam, supervised by prof. Max Welling. He was a co-founder of Scyfer, a company focussed on active deep learning, acquired by Qualcomm in 2017. He holds a BSc in theoretical computer science from Utrecht University and a MSc in artificial intelligence from the University of Amsterdam (both cum laude). His research is focussed on understanding and improving deep representation learning, in particular learning of equivariant and disentangled representations, data-efficient deep learning, learning on non-Euclidean domains, and applications of group representation theory and non-commutative harmonic analysis, as well as deep learning based source compression. He has done internships at Google Deepmind (working with Geoff Hinton) and OpenAI. He received the 2014 University of Amsterdam thesis prize, a Google PhD Fellowship, ICLR 2018 best paper award for “Spherical CNNs”, and was named one of 35 innovators under 35 in Europe by MIT in 2018.
Erik Bekkers (University of Amsterdam)
Nina Miolane (University of California, Santa Barbara)
Rose Yu (UC San Diego)
More from the Same Authors
-
2020 : Paper 60: Traffic Forecasting using Vehicle-to-Vehicle Communication and Recurrent Neural Networks »
Rose Yu -
2021 : Which priors matter? Benchmarking models for learning latent dynamics »
Aleksandar Botev · Andrew Jaegle · Peter Wirnsberger · Daniel Hennes · Irina Higgins -
2021 : Towards Lightweight Controllable Audio Synthesis with Conditional Implicit Neural Representations »
Jan Zuiderveld · Marco Federici · Erik Bekkers -
2022 : A Noether's theorem for gradient flow: Continuous symmetries of the architecture and conserved quantities of gradient flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Solving Math Word Problems with Process-based and Outcome-based Feedback »
Jonathan Uesato · Nate Kushman · Ramana Kumar · H. Francis Song · Noah Siegel · Lisa Wang · Antonia Creswell · Geoffrey Irving · Irina Higgins -
2022 : Regression-Based Elastic Metric Learning on Shape Spaces of Cell Curves »
Adele Myers · Nina Miolane -
2022 : Charting Flat Minima Using the Conserved Quantities of Gradient Flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Testing geometric representation hypotheses from simulated place cell recordings »
Thibault Niederhauser · Adam Lester · Nina Miolane · Khanh Dao Duc · Manu Madhav -
2022 : Kendall Shape-VAE : Learning Shapes in a Generative Framework »
Sharvaree Vadgama · Jakub Tomczak · Erik Bekkers -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Rethinking Neural Relational Inference for Granger Causal Discovery »
Stefanos Bennett · Rose Yu -
2022 : Deconfounded Imitation Learning »
Risto Vuorio · Pim de Haan · Johann Brehmer · Hanno Ackermann · Daniel Dijkman · Taco Cohen -
2023 Poster: A General Framework for Robust G-Invariance in G-Equivariant Networks »
Sophia Sanborn · Nina Miolane -
2023 Poster: EDGI: Equivariant Diffusion for Planning with Embodied Agents »
Johann Brehmer · Joey Bose · Pim de Haan · Taco Cohen -
2023 Poster: DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting »
Salva Rühling Cachay · Bo Zhao · Hailey James · Rose Yu -
2023 Poster: Geometric Algebra Transformers »
Johann Brehmer · Pim de Haan · Sönke Behrends · Taco Cohen -
2023 Poster: Latent Field Discovery in Interacting Dynamical Systems with Neural Fields »
Miltiadis Kofinas · Erik Bekkers · Naveen Nagaraja · Efstratios Gavves -
2023 Poster: Automatic Integration for Spatiotemporal Neural Point Processes »
Zihao Zhou · Rose Yu -
2023 Poster: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Oral: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Workshop: Symmetry and Geometry in Neural Representations »
Sophia Sanborn · Christian A Shewmake · Simone Azeglio · Nina Miolane -
2022 : Rose Yu: "Physics-Guided Deep Learning for Climate Science" »
Rose Yu -
2022 : Keynote Talk 2 »
Rose Yu -
2022 : Neural Ideograms and Equivariant Representation Learning »
Erik Bekkers -
2022 : Solving Math Word Problems with Process-based and Outcome-based Feedback »
Jonathan Uesato · Nate Kushman · Ramana Kumar · H. Francis Song · Noah Siegel · Lisa Wang · Antonia Creswell · Geoffrey Irving · Irina Higgins -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Kendall Shape-VAE : Learning Shapes in a Generative Framework »
Sharvaree Vadgama · Jakub Tomczak · Erik Bekkers -
2022 : From Equivariance to Naturality »
Taco Cohen -
2022 : Symmetry-Based Representations for Artificial and Biological Intelligence »
Irina Higgins -
2022 Workshop: Information-Theoretic Principles in Cognitive Systems »
Noga Zaslavsky · Mycal Tucker · Sarah Marzen · Irina Higgins · Stephanie Palmer · Samuel J Gershman -
2022 Workshop: Symmetry and Geometry in Neural Representations (NeurReps) »
Sophia Sanborn · Christian A Shewmake · Simone Azeglio · Arianna Di Bernardo · Nina Miolane -
2022 Poster: A PAC-Bayesian Generalization Bound for Equivariant Networks »
Arash Behboodi · Gabriele Cesa · Taco Cohen -
2022 Poster: Meta-Learning Dynamics Forecasting Using Task Inference »
Rui Wang · Robin Walters · Rose Yu -
2022 Poster: Symmetry Teleportation for Accelerated Optimization »
Bo Zhao · Nima Dehmamy · Robin Walters · Rose Yu -
2022 Poster: Weakly supervised causal representation learning »
Johann Brehmer · Pim de Haan · Phillip Lippe · Taco Cohen -
2022 Poster: On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane »
Gabriele Cesa · Arash Behboodi · Taco Cohen · Max Welling -
2021 : Physics-Guided AI for Modeling Autonomous Vehicle Dynamics »
Rose Yu · Rose Yu -
2021 : Invited Talk #3 - Disentanglement for Controllable Image Generation (Irina Higgins) »
Irina Higgins -
2021 Poster: SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision »
Irina Higgins · Peter Wirnsberger · Andrew Jaegle · Aleksandar Botev -
2021 Tutorial: Pay Attention to What You Need: Do Structural Priors Still Matter in the Age of Billion Parameter Models? »
Irina Higgins · Antonia Creswell · Sébastien Racanière -
2021 : Why do we Need Structure and Where does it Come From? »
Irina Higgins -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Rose Yu »
Rose Yu -
2020 : Rose Yu - Physics-Guided AI for Learning Spatiotemporal Dynamics »
Rose Yu -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 : Invited Talk 11 Q&A by Rose »
Rose Yu -
2020 : Invited Talk 11: Tensor Methods for Efficient and Interpretable Spatiotemporal Learning »
Rose Yu -
2020 : Invited Talk: Irina Higgins »
Irina Higgins -
2020 : Panel Discussion »
Jessica Hamrick · Klaus Greff · Michelle A. Lee · Irina Higgins · Josh Tenenbaum -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 : Quantifying Uncertainty in Deep Spatiotemporal Forecasting for COVID-19 »
Yian Ma · Rose Yu -
2020 Poster: Deep Imitation Learning for Bimanual Robotic Manipulation »
Fan Xie · Alexander Chowdhury · M. Clara De Paolis Kaluza · Linfeng Zhao · Lawson Wong · Rose Yu -
2020 Poster: Learning Disentangled Representations of Videos with Missing Data »
Armand Comas · Chi Zhang · Zlatan Feric · Octavia Camps · Rose Yu -
2020 Poster: Disentangling by Subspace Diffusion »
David Pfau · Irina Higgins · Alex Botev · Sébastien Racanière -
2020 Session: Orals & Spotlights Track 06: Dynamical Sys/Density/Sparsity »
Animesh Garg · Rose Yu -
2020 Tutorial: (Track2) Equivariant Networks Q&A »
Risi Kondor · Taco Cohen -
2020 Tutorial: (Track2) Equivariant Networks »
Risi Kondor · Taco Cohen -
2019 : Panel Discussion: What sorts of cognitive or biological (architectural) inductive biases will be crucial for developing effective artificial intelligence? »
Irina Higgins · Talia Konkle · Matthias Bethge · Nikolaus Kriegeskorte -
2019 : What is disentangling and does intelligence need it? »
Irina Higgins -
2019 Poster: A General Theory of Equivariant CNNs on Homogeneous Spaces »
Taco Cohen · Mario Geiger · Maurice Weiler -
2018 : Invited Talk 3 »
Irina Higgins -
2018 : Long Range Sequence Generation via Multiresolution Adversarial Training »
Rose Yu -
2018 Poster: Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies »
Alessandro Achille · Tom Eccles · Loic Matthey · Chris Burgess · Nicholas Watters · Alexander Lerchner · Irina Higgins -
2018 Spotlight: Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies »
Alessandro Achille · Tom Eccles · Loic Matthey · Chris Burgess · Nicholas Watters · Alexander Lerchner · Irina Higgins -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 : Irina Higgins »
Irina Higgins