Timezone: »

 
Exploiting Human Interactions to Learn Human Attention
Shalini De Mello
Event URL: https://app.sli.do/event/bayr24RBpGdcveCqzPfdR6 »

Unconstrained eye gaze estimation using ordinary webcams in smart phones and tablets is immensely useful for many applications. However, current eye gaze estimators are limited in their ability to generalize to a wide range of unconstrained conditions, including, head poses, eye gaze angles and lighting conditions, etc. This is mainly due to the lack of availability of gaze training data in in-the-wild conditions. Notably, eye gaze is a natural form of human communication while humans interact with each other. Visual data (videos or images) containing human interaction are also abundantly available on the internet and are constantly growing as people upload more. Could we leverage visual data containing human interaction to learn unconstrained gaze estimators? In this talk we will describe our foray into addressing this challenging problem. Our findings point to the great potential of human interaction data as a low cost and ubiquitously available source of training data for unconstrained gaze estimators. By lessening the burden of specialized data collection and annotation, we hope to foster greater real-word adoption and proliferation of gaze estimation technology in end-user devices.

Author Information

Shalini De Mello (NVIDIA Research)
Shalini De Mello

Shalini De Mello is a Principal Research Scientist and Research Lead in the Learning and Perception Research group at NVIDIA, which she joined in 2013. Her research interests are in human-centric vision (face and gaze analysis) and in data-efficient (synth2real, low-shot, self-supervised and multimodal) machine learning. She has co-authored 48 peer-reviewed publications and holds 38 patents. Her inventions have contributed to several NVIDIA products, including DriveIX and Maxine. Previously, she has worked at Texas Instruments and AT&T Laboratories. She received her Doctoral degree in Electrical and Computer Engineering from the University of Texas at Austin.

More from the Same Authors