Timezone: »
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems growin complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compileroptimization, etc.) quickly results in a combinatorial explosion of design space.This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role as-signed to each agent. We test this hypothesis by designing domain-specific DRAMmemory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.
Author Information
Srivatsan Krishnan (Harvard University)
Natasha Jaques (Google Brain, UC Berkeley)
Natasha Jaques holds a joint position as a Research Scientist at Google Brain and Postdoctoral Fellow at UC Berkeley. Her research focuses on Social Reinforcement Learning in multi-agent and human-AI interactions. Natasha completed her PhD at MIT, where her thesis received the Outstanding PhD Dissertation Award from the Association for the Advancement of Affective Computing. Her work has also received Best Demo at NeurIPS, an honourable mention for Best Paper at ICML, Best of Collection in the IEEE Transactions on Affective Computing, and Best Paper at the NeurIPS workshops on ML for Healthcare and Cooperative AI. She has interned at DeepMind, Google Brain, and was an OpenAI Scholars mentor. Her work has been featured in Science Magazine, Quartz, MIT Technology Review, Boston Magazine, and on CBC radio. Natasha earned her Masters degree from the University of British Columbia, and undergraduate degrees in Computer Science and Psychology from the University of Regina.
Shayegan Omidshafiei (Google)
Dan Zhang (Google Brain)
Izzeddin Gur (Google)
Vijay Janapa Reddi (Harvard University)
Aleksandra Faust (Google Brain)
Aleksandra Faust is a Senior Research Engineer at Google Brain, specializing in robot intelligence. Previously, Aleksandra led machine learning efforts for self-driving car planning and controls in Waymo and Google X, and was a researcher in Sandia National Laboratories, where she worked on satellites and other remote sensing applications. She earned a Ph.D. in Computer Science at the University of New Mexico (with distinction), a Master’s in Computer Science from University of Illinois at Urbana-Champaign, and a Bachelor’s in Mathematics from University of Belgrade, Serbia. Her research interests include reinforcement learning, adaptive motion planning, and machine learning for decision-making. Aleksandra won Tom L. Popejoy Award for the best doctoral dissertation at the University of New Mexico in Engineering, Mathematics, and Sciences in the period of 2011-2014. She was also awarded with the Best Paper in Service Robotics at ICRA 2018, Sandia National Laboratories’ Doctoral Studies Program and New Mexico Space Grant fellowships, as well as the Outstanding Graduate Student in Computer Science award. Her work has been featured in the New York Times.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration »
Dates n/a. Room
More from the Same Authors
-
2021 : MLPerf Tiny Benchmark »
Colby Banbury · Vijay Janapa Reddi · Peter Torelli · Nat Jeffries · Csaba Kiraly · Jeremy Holleman · Pietro Montino · David Kanter · Pete Warden · Danilo Pau · Urmish Thakker · antonio torrini · jay cordaro · Giuseppe Di Guglielmo · Javier Duarte · Honson Tran · Nhan Tran · niu wenxu · xu xuesong -
2021 : The People’s Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage »
Daniel Galvez · Greg Diamos · Juan Torres · Juan Cerón · Keith Achorn · Anjali Gopi · David Kanter · Max Lam · Mark Mazumder · Vijay Janapa Reddi -
2021 : Multilingual Spoken Words Corpus »
Mark Mazumder · Sharad Chitlangia · Colby Banbury · Yiping Kang · Juan Ciro · Keith Achorn · Daniel Galvez · Mark Sabini · Peter Mattson · David Kanter · Greg Diamos · Pete Warden · Josh Meyer · Vijay Janapa Reddi -
2021 : Fast Inference and Transfer of Compositional Task for Few-shot Task Generalization »
Sungryull Sohn · Hyunjae Woo · Jongwook Choi · Izzeddin Gur · Aleksandra Faust · Honglak Lee -
2021 : TARGETED ENVIRONMENT DESIGN FROM OFFLINE DATA »
Izzeddin Gur · Ofir Nachum · Aleksandra Faust -
2022 : Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios »
Yiren Lu · Yiren Lu · Yiren Lu · Justin Fu · George Tucker · Xinlei Pan · Eli Bronstein · Rebecca Roelofs · Benjamin Sapp · Brandyn White · Aleksandra Faust · Shimon Whiteson · Dragomir Anguelov · Sergey Levine -
2022 : CLUTR: Curriculum Learning via Unsupervised Task Representation Learning »
Abdus Salam Azad · Izzeddin Gur · Aleksandra Faust · Pieter Abbeel · Ion Stoica -
2022 : In the ZONE: Measuring difficulty and progression in curriculum generation »
Rose Wang · Jesse Mu · Dilip Arumugam · Natasha Jaques · Noah Goodman -
2022 : Concept-based Understanding of Emergent Multi-Agent Behavior »
Niko Grupen · Shayegan Omidshafiei · Natasha Jaques · Been Kim -
2022 : Natasha Jaques »
Natasha Jaques -
2022 Workshop: Machine Learning for Systems »
Neel Kant · Martin Maas · Azade Nova · Benoit Steiner · Xinlei XU · Dan Zhang -
2022 Poster: Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis »
Shayegan Omidshafiei · Andrei Kapishnikov · Yannick Assogba · Lucas Dixon · Been Kim -
2022 Poster: The Dollar Street Dataset: Images Representing the Geographic and Socioeconomic Diversity of the World »
William Gaviria Rojas · Sudnya Diamos · Keertan Kini · David Kanter · Vijay Janapa Reddi · Cody Coleman -
2021 : Q&A Lightning Talks - Responsibility and Ethics »
Vijay Janapa Reddi · Cody Coleman -
2021 : Q&A Lightning Talks - Challenge Problems and Theory »
Cody Coleman · Vijay Janapa Reddi -
2021 : Lightning Talks - Challenge Problems and Theory »
Vijay Janapa Reddi · Carole-Jean Wu -
2021 : Q&A Lightning Talk - Benchmarks and Challenges »
Cody Coleman · Vijay Janapa Reddi -
2021 : Lightning Talks - Benchmarks and Challenges »
Vijay Janapa Reddi · Cody Coleman -
2021 Workshop: Data Centric AI »
Andrew Ng · Lora Aroyo · Greg Diamos · Cody Coleman · Vijay Janapa Reddi · Joaquin Vanschoren · Carole-Jean Wu · Sharon Zhou · Lynn He -
2021 : Safe RL Debate »
Sylvia Herbert · Animesh Garg · Emma Brunskill · Aleksandra Faust · Dylan Hadfield-Menell -
2021 : Aleksandra Faust »
Aleksandra Faust -
2021 : Aleksandra Faust »
Aleksandra Faust -
2021 Poster: Environment Generation for Zero-Shot Compositional Reinforcement Learning »
Izzeddin Gur · Natasha Jaques · Yingjie Miao · Jongwook Choi · Manoj Tiwari · Honglak Lee · Aleksandra Faust -
2020 Poster: Real World Games Look Like Spinning Tops »
Wojciech Czarnecki · Gauthier Gidel · Brendan Tracey · Karl Tuyls · Shayegan Omidshafiei · David Balduzzi · Max Jaderberg -
2020 Session: Orals & Spotlights Track 04: Reinforcement Learning »
David Ha · Aleksandra Faust -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos